Cargando…
Accelerometer-Based Human Fall Detection Using Convolutional Neural Networks
Human falls are a global public health issue resulting in over 37.3 million severe injuries and 646,000 deaths yearly. Falls result in direct financial cost to health systems and indirectly to society productivity. Unsurprisingly, human fall detection and prevention are a major focus of health resea...
Autores principales: | Santos, Guto Leoni, Endo, Patricia Takako, Monteiro, Kayo Henrique de Carvalho, Rocha, Elisson da Silva, Silva, Ivanovitch, Lynn, Theo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480090/ https://www.ncbi.nlm.nih.gov/pubmed/30959877 http://dx.doi.org/10.3390/s19071644 |
Ejemplares similares
-
Data set for automatic detection of online misogynistic speech()
por: Lynn, Theo, et al.
Publicado: (2019) -
Sorting the Healthy Diet Signal from the Social Media Expert Noise: Preliminary Evidence from the Healthy Diet Discourse on Twitter
por: Lynn, Theo, et al.
Publicado: (2020) -
Prediction of malaria using deep learning models: A case study on city clusters in the state of Amazonas, Brazil, from 2003 to 2018
por: Barboza, Matheus Félix Xavier, et al.
Publicado: (2022) -
A Brazilian classified data set for prognosis of tuberculosis, between January 2001 and April 2020
por: Lino Ferreira da Silva Barros, Maicon Herverton, et al.
Publicado: (2022) -
#StayHome: Monitoring and benchmarking social isolation trends in Caruaru and the Região Metropolitana do Recife during the COVID-19 pandemic
por: Endo, Patricia Takako, et al.
Publicado: (2020)