Cargando…
Fault Detection in Wireless Sensor Networks through the Random Forest Classifier
Wireless Sensor Networks (WSNs) are vulnerable to faults because of their deployment in unpredictable and hazardous environments. This makes WSN prone to failures such as software, hardware, and communication failures. Due to the sensor’s limited resources and diverse deployment fields, fault detect...
Autores principales: | Noshad, Zainib, Javaid, Nadeem, Saba, Tanzila, Wadud, Zahid, Saleem, Muhammad Qaiser, Alzahrani, Mohammad Eid, Sheta, Osama E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480196/ https://www.ncbi.nlm.nih.gov/pubmed/30939764 http://dx.doi.org/10.3390/s19071568 |
Ejemplares similares
-
Machine Learning Algorithms and Fault Detection for Improved Belief Function Based Decision Fusion in Wireless Sensor Networks
por: Javaid, Atia, et al.
Publicado: (2019) -
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks
por: Wadud, Zahid, et al.
Publicado: (2017) -
Correction: RCER: Reliable Cluster-based Energy-aware Routing protocol for heterogeneous Wireless Sensor Networks
por: Haseeb, Khalid, et al.
Publicado: (2019) -
Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network
por: Ahmed, Farwa, et al.
Publicado: (2018) -
RCER: Reliable Cluster-based Energy-aware Routing protocol for heterogeneous Wireless Sensor Networks
por: Haseeb, Khalid, et al.
Publicado: (2019)