Cargando…
Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition
In the last decade, deep learning techniques have further improved human activity recognition (HAR) performance on several benchmark datasets. This paper presents a novel framework to classify and analyze human activities. A new convolutional neural network (CNN) strategy is applied to a single user...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480225/ https://www.ncbi.nlm.nih.gov/pubmed/30935117 http://dx.doi.org/10.3390/s19071556 |
Sumario: | In the last decade, deep learning techniques have further improved human activity recognition (HAR) performance on several benchmark datasets. This paper presents a novel framework to classify and analyze human activities. A new convolutional neural network (CNN) strategy is applied to a single user movement recognition using a smartphone. Three parallel CNNs are used for local feature extraction, and latter they are fused in the classification task stage. The whole CNN scheme is based on a feature fusion of a fine-CNN, a medium-CNN, and a coarse-CNN. A tri-axial accelerometer and a tri-axial gyroscope sensor embedded in a smartphone are used to record the acceleration and angle signals. Six human activities successfully classified are walking, walking-upstairs, walking-downstairs, sitting, standing and laying. Performance evaluation is presented for the proposed CNN. |
---|