Cargando…
Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition
In the last decade, deep learning techniques have further improved human activity recognition (HAR) performance on several benchmark datasets. This paper presents a novel framework to classify and analyze human activities. A new convolutional neural network (CNN) strategy is applied to a single user...
Autores principales: | Avilés-Cruz, Carlos, Ferreyra-Ramírez, Andrés, Zúñiga-López, Arturo, Villegas-Cortéz, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480225/ https://www.ncbi.nlm.nih.gov/pubmed/30935117 http://dx.doi.org/10.3390/s19071556 |
Ejemplares similares
-
Is Coarse-to-Fine Strategy Sensitive to Normal Aging?
por: Musel, Benoit, et al.
Publicado: (2012) -
Coarse-to-Fine Hand–Object Pose Estimation with Interaction-Aware Graph Convolutional Network
por: Zhang, Maomao, et al.
Publicado: (2021) -
Large-Scale Coarse-to-Fine Object Retrieval Ontology and Deep Local Multitask Learning
por: Ly, Ngoc Q., et al.
Publicado: (2019) -
Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition
por: Zhang, Shanwen, et al.
Publicado: (2017) -
Coronary Vessel Segmentation by Coarse-to-Fine Strategy Using U-nets
por: Thuy, Le Nhi Lam, et al.
Publicado: (2021)