Cargando…
Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps
We present an approach to analyzing fine particulate matter (PM(2.5)) data from a network of “low cost air quality monitors” (LCAQM) to obtain a finely resolved concentration map. In the approach, based on a dispersion model, we first identify the probable locations of the sources, and then estimate...
Autores principales: | Ahangar, Faraz Enayati, Freedman, Frank R., Venkatram, Akula |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480232/ https://www.ncbi.nlm.nih.gov/pubmed/30965621 http://dx.doi.org/10.3390/ijerph16071252 |
Ejemplares similares
-
High Resolution Spatial and Temporal Mapping of Traffic-Related Air Pollutants
por: Batterman, Stuart, et al.
Publicado: (2015) -
Spatial calibration and PM(2.5) mapping of low-cost air quality sensors
por: Chu, Hone-Jay, et al.
Publicado: (2020) -
Accounting for Area Sources in Air Pollution Models
por: Venkatram, Akula, et al.
Publicado: (2023) -
A web-based screening tool for near-port air quality assessments
por: Isakov, Vlad, et al.
Publicado: (2017) -
Mapping Urban Air Quality from Mobile Sensors Using Spatio-Temporal Geostatistics
por: Idir, Yacine Mohamed, et al.
Publicado: (2021)