Cargando…
Reconstruction of 3D Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3D Models from ShapeNetCore Dataset
Depth-based reconstruction of three-dimensional (3D) shape of objects is one of core problems in computer vision with a lot of commercial applications. However, the 3D scanning for point cloud-based video streaming is expensive and is generally unattainable to an average user due to required setup o...
Autores principales: | Kulikajevas, Audrius, Maskeliūnas, Rytis, Damaševičius, Robertas, Misra, Sanjay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480328/ https://www.ncbi.nlm.nih.gov/pubmed/30935104 http://dx.doi.org/10.3390/s19071553 |
Ejemplares similares
-
3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network
por: Kulikajevas, Audrius, et al.
Publicado: (2020) -
HUMANNET—A Two-Tiered Deep Neural Network Architecture for Self-Occluding Humanoid Pose Reconstruction
por: Kulikajevas, Audrius, et al.
Publicado: (2021) -
Detection of sitting posture using hierarchical image composition and deep learning
por: Kulikajevas, Audrius, et al.
Publicado: (2021) -
Auto-Refining Reconstruction Algorithm for Recreation of Limited Angle Humanoid Depth Data
por: Kulikajevas, Audrius, et al.
Publicado: (2021) -
Lightweight Deep Learning Model for Assessment of Substitution Voicing and Speech after Laryngeal Carcinoma Surgery
por: Maskeliūnas, Rytis, et al.
Publicado: (2022)