Cargando…
Dealing with the Effect of Air in Fluid Structure Interaction by Coupled SPH-FEM Methods
Smoothed particle hydrodynamics (SPH) and the finite element method (FEM) are often combined with the scope to model the interaction between structures and the surrounding fluids (FSI). There is the case, for instance, of aircrafts crashing on water or speedboats slamming into waves. Due to the high...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480372/ https://www.ncbi.nlm.nih.gov/pubmed/30974756 http://dx.doi.org/10.3390/ma12071162 |
Sumario: | Smoothed particle hydrodynamics (SPH) and the finite element method (FEM) are often combined with the scope to model the interaction between structures and the surrounding fluids (FSI). There is the case, for instance, of aircrafts crashing on water or speedboats slamming into waves. Due to the high computational complexity, the influence of air is often neglected, limiting the analysis to the interaction between structure and water. On the contrary, this work aims to specifically investigate the effect of air when merged inside the fluid–structure interaction (FSI) computational models. Measures from experiments were used as a basis to validate estimations comparing results from models that include or exclude the presence of air. Outcomes generally showed a great correlation between simulation and experiments, with marginal differences in terms of accelerations, especially during the first phase of impact and considering the presence of air in the model. |
---|