Cargando…

Generation of iPSCs from Jaw Periosteal Cells Using Self-Replicating RNA

Jaw periosteal cells (JPCs) represent a suitable stem cell source for bone tissue engineering (BTE) applications. However, challenges associated with limited cell numbers, stressful cell sorting, or the occurrence of cell senescence during in vitro passaging and the associated insufficient osteogeni...

Descripción completa

Detalles Bibliográficos
Autores principales: Umrath, Felix, Steinle, Heidrun, Weber, Marbod, Wendel, Hans-Peter, Reinert, Siegmar, Alexander, Dorothea, Avci-Adali, Meltem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480539/
https://www.ncbi.nlm.nih.gov/pubmed/30987077
http://dx.doi.org/10.3390/ijms20071648
Descripción
Sumario:Jaw periosteal cells (JPCs) represent a suitable stem cell source for bone tissue engineering (BTE) applications. However, challenges associated with limited cell numbers, stressful cell sorting, or the occurrence of cell senescence during in vitro passaging and the associated insufficient osteogenic potential in vitro of JPCs and other mesenchymal stem/stromal cells (MSCs) are main hurdles and still need to be solved. In this study, for the first time, induced pluripotent stem cells (iPSCs) were generated from human JPCs to open up a new source of stem cells for BTE. For this purpose, a non-integrating self-replicating RNA (srRNA) encoding reprogramming factors and green fluorescent protein (GFP) as a reporter was used to obtain JPC-iPSCs with a feeder- and xeno-free reprogramming protocol to meet the highest safety standards for future clinical applications. Furthermore, to analyze the potential of these iPSCs as a source of osteogenic progenitor cells, JPC-iPSCs were differentiated into iPSC-derived mesenchymal stem/stromal like cells (iMSCs) and further differentiated to the osteogenic lineage under xeno-free conditions. The produced iMSCs displayed MSC marker expression and morphology as well as strong mineralization during osteogenic differentiation.