Cargando…
The Applicability of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile Sensors for Monitoring Different Types of Photopolymerization Processes and Acceleration of Cationic and Free-Radical Photopolymerization Under Near UV Light
The performance of a series of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives as fluorescent molecular sensors for monitoring photopolymerization processes of different monomers by the Fluorescence Probe Technique (FPT) was studied. It has been shown that the new derivatives are characteri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480573/ https://www.ncbi.nlm.nih.gov/pubmed/30965585 http://dx.doi.org/10.3390/s19071668 |
Sumario: | The performance of a series of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives as fluorescent molecular sensors for monitoring photopolymerization processes of different monomers by the Fluorescence Probe Technique (FPT) was studied. It has been shown that the new derivatives are characterized by much higher sensitivity than the commercially available 7-diethylamino-4-methylcoumarin (Coumarin 1) and trans-2-(2′,5′-dimethoxyphenyl)ethenyl-2,3,4, 5,6-pentafluorobenzene (25ST) probes. It has been discovered that the 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives accelerate the cationic photopolymerization process initiated with diphenyliodonium photoinitiators at the wavelength where the photoinitiator alone does not work. They are particularly efficient for the photoinitiation of cationic photopolymerization of an epoxide and vinyl monomers. Consequently, the application of the 2-amino-4,6-diphenyl-pyridine-3-carbonitrile derivatives in a dual role: (a) as fluorescent sensors for monitoring the free-radical, thiol-ene and cationic polymerization progress, and (b) as long-wavelength co-initiators for diphenyliodonium salts initiators, is proposed. |
---|