Cargando…

Simultaneous Determination of Moxifloxacin and Flavoxate by RP-HPLC and Ecofriendly Derivative Spectrophotometry Methods in Formulations

Simple, fast, and precise reversed-phase (RP)-high-performance liquid chromatography (HPLC) and two ecofriendly spectrophotometric methods were established and validated for the simultaneous determination of moxifloxacin HCl (MOX) and flavoxate HCl (FLX) in formulations. Chromatographic methods invo...

Descripción completa

Detalles Bibliográficos
Autores principales: Attimarad, Mahesh, Shahzad Chohan, Muhammad, Ahmed Balgoname, Abdulmalek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480697/
https://www.ncbi.nlm.nih.gov/pubmed/30987126
http://dx.doi.org/10.3390/ijerph16071196
Descripción
Sumario:Simple, fast, and precise reversed-phase (RP)-high-performance liquid chromatography (HPLC) and two ecofriendly spectrophotometric methods were established and validated for the simultaneous determination of moxifloxacin HCl (MOX) and flavoxate HCl (FLX) in formulations. Chromatographic methods involve the separation of two analytes using an Agilent Zorbax SB C18 HPLC column (150 mm × 4.6 mm; 5 µm) and a mobile phase consisting of phosphate buffer (50 mM; pH 5): methanol: acetonitrile in a proportion of 50:20:30 v/v, respectively. Valsartan was used as an internal standard. Analytes were monitored by measuring the absorbance of elute at 299 nm for MOX and 250 nm for FLX and valsartan. Two environmentally friendly spectrophotometric (first derivative and ratio first derivative) methods were also developed using water as a solvent. For the derivative spectrophotometric determination of MOX and FLX, a zero-crossing technique was adopted. The wavelengths selected for MOX and FLX were −304.0 nm and −331.8 nm for the first derivative spectrophotometric method and 358.4 nm and −334.1 nm for the ratio first-derivative spectrophotometric method, respectively. All methods were successfully validated, as per the International Conference on Harmonization(ICH) guidelines, and all parameters were well within acceptable ranges. The proposed analytical methods were successfully utilized for the simultaneous estimation of MOX and FLX in formulations.