Cargando…
Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification
Deep learning models combining spectral and spatial features have been proven to be effective for hyperspectral image (HSI) classification. However, most spatial feature integration methods only consider a single input spatial scale regardless of various shapes and sizes of objects over the image pl...
Autores principales: | Li, Simin, Zhu, Xueyu, Bao, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480716/ https://www.ncbi.nlm.nih.gov/pubmed/30974816 http://dx.doi.org/10.3390/s19071714 |
Ejemplares similares
-
Hybrid Dilated Convolution with Multi-Scale Residual Fusion Network for Hyperspectral Image Classification
por: Li, Chenming, et al.
Publicado: (2021) -
Classification of multi-year and multi-variety pumpkin seeds using hyperspectral imaging technology and three-dimensional convolutional neural network
por: Li, Xiyao, et al.
Publicado: (2023) -
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
por: Li, Chenming, et al.
Publicado: (2018) -
Identification of Soybean Varieties Using Hyperspectral Imaging Coupled with Convolutional Neural Network
por: Zhu, Susu, et al.
Publicado: (2019) -
Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization
por: Subba Reddy, Tatireddy, et al.
Publicado: (2022)