Cargando…
Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig
Diabetic autonomic peripheral neuropathy (PN) involves a broad spectrum of organs. One of them is the gastrointestinal (GI) tract. The molecular mechanisms underlying the pathogenesis of digestive complications are not yet fully understood. Digestion is controlled by the central nervous system (CNS)...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480956/ https://www.ncbi.nlm.nih.gov/pubmed/30987291 http://dx.doi.org/10.3390/ijms20071681 |
_version_ | 1783413685099692032 |
---|---|
author | Bulc, Michał Palus, Katarzyna Dąbrowski, Michał Całka, Jarosław |
author_facet | Bulc, Michał Palus, Katarzyna Dąbrowski, Michał Całka, Jarosław |
author_sort | Bulc, Michał |
collection | PubMed |
description | Diabetic autonomic peripheral neuropathy (PN) involves a broad spectrum of organs. One of them is the gastrointestinal (GI) tract. The molecular mechanisms underlying the pathogenesis of digestive complications are not yet fully understood. Digestion is controlled by the central nervous system (CNS) and the enteric nervous system (ENS) within the wall of the GI tract. Enteric neurons exert regulatory effects due to the many biologically active substances secreted and released by enteric nervous system (ENS) structures. These include nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS). It is a very important inhibitory factor, necessary for smooth muscle relaxation. Moreover, it was noted that nitrergic innervation can undergo adaptive changes during pathological processes. Additionally, nitrergic neurons function may be regulated through the synthesis of other active neuropeptides. Therefore, in the present study, using the immunofluorescence technique, we first examined the influence of hyperglycemia on the NOS- containing neurons in the porcine small intestine and secondly the co-localization of nNOS with vasoactive intestinal polypeptide (VIP), galanin (GAL) and substance P (SP) in all plexuses studied. Following chronic hyperglycaemia, we observed a reduction in the number of the NOS-positive neurons in all intestinal segments studied, as well as an increased in investigated substances in nNOS positive neurons. This observation confirmed that diabetic hyperglycaemia can cause changes in the neurochemical characteristics of enteric neurons, which can lead to numerous disturbances in gastrointestinal tract functions. Moreover, can be the basis of an elaboration of these peptides analogues utilized as therapeutic agents in the treatment of GI complications. |
format | Online Article Text |
id | pubmed-6480956 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64809562019-04-29 Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig Bulc, Michał Palus, Katarzyna Dąbrowski, Michał Całka, Jarosław Int J Mol Sci Article Diabetic autonomic peripheral neuropathy (PN) involves a broad spectrum of organs. One of them is the gastrointestinal (GI) tract. The molecular mechanisms underlying the pathogenesis of digestive complications are not yet fully understood. Digestion is controlled by the central nervous system (CNS) and the enteric nervous system (ENS) within the wall of the GI tract. Enteric neurons exert regulatory effects due to the many biologically active substances secreted and released by enteric nervous system (ENS) structures. These include nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS). It is a very important inhibitory factor, necessary for smooth muscle relaxation. Moreover, it was noted that nitrergic innervation can undergo adaptive changes during pathological processes. Additionally, nitrergic neurons function may be regulated through the synthesis of other active neuropeptides. Therefore, in the present study, using the immunofluorescence technique, we first examined the influence of hyperglycemia on the NOS- containing neurons in the porcine small intestine and secondly the co-localization of nNOS with vasoactive intestinal polypeptide (VIP), galanin (GAL) and substance P (SP) in all plexuses studied. Following chronic hyperglycaemia, we observed a reduction in the number of the NOS-positive neurons in all intestinal segments studied, as well as an increased in investigated substances in nNOS positive neurons. This observation confirmed that diabetic hyperglycaemia can cause changes in the neurochemical characteristics of enteric neurons, which can lead to numerous disturbances in gastrointestinal tract functions. Moreover, can be the basis of an elaboration of these peptides analogues utilized as therapeutic agents in the treatment of GI complications. MDPI 2019-04-04 /pmc/articles/PMC6480956/ /pubmed/30987291 http://dx.doi.org/10.3390/ijms20071681 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bulc, Michał Palus, Katarzyna Dąbrowski, Michał Całka, Jarosław Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig |
title | Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig |
title_full | Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig |
title_fullStr | Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig |
title_full_unstemmed | Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig |
title_short | Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig |
title_sort | hyperglycaemia-induced downregulation in expression of nnos intramural neurons of the small intestine in the pig |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480956/ https://www.ncbi.nlm.nih.gov/pubmed/30987291 http://dx.doi.org/10.3390/ijms20071681 |
work_keys_str_mv | AT bulcmichał hyperglycaemiainduceddownregulationinexpressionofnnosintramuralneuronsofthesmallintestineinthepig AT paluskatarzyna hyperglycaemiainduceddownregulationinexpressionofnnosintramuralneuronsofthesmallintestineinthepig AT dabrowskimichał hyperglycaemiainduceddownregulationinexpressionofnnosintramuralneuronsofthesmallintestineinthepig AT całkajarosław hyperglycaemiainduceddownregulationinexpressionofnnosintramuralneuronsofthesmallintestineinthepig |