Cargando…

Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging

PURPOSE: To study the effect of a metal tracheal stent on radiation dose distribution. METHOD: A metal tube bracket is placed in a self-made foam tube sleeve, and micro-computed tomography scanning is performed directly. The foam sleeve containing the metal bracket is placed in a nonuniform phantom...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Tao, Ni, Xinye, Gao, Liugang, Sui, Jianfeng, Xie, Kai, Chang, Shuquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480982/
https://www.ncbi.nlm.nih.gov/pubmed/31010405
http://dx.doi.org/10.1177/1533033819844485
_version_ 1783413690529218560
author Lin, Tao
Ni, Xinye
Gao, Liugang
Sui, Jianfeng
Xie, Kai
Chang, Shuquan
author_facet Lin, Tao
Ni, Xinye
Gao, Liugang
Sui, Jianfeng
Xie, Kai
Chang, Shuquan
author_sort Lin, Tao
collection PubMed
description PURPOSE: To study the effect of a metal tracheal stent on radiation dose distribution. METHOD: A metal tube bracket is placed in a self-made foam tube sleeve, and micro-computed tomography scanning is performed directly. The foam sleeve containing the metal bracket is placed in a nonuniform phantom for a routine computed tomography scan. The stents in conventional computed tomography images are replaced by the stents in micro-computed tomography images. Subsequently, 2 sets of computed tomography images are obtained and then imported to a radiotherapy treatment planning system. A single photon beam at 0° is designed in a field size of 10 cm × 10 cm, a photon beam of 6 MV, and a monitor unit of 200 MU. Monte Carlo algorithm is used to calculate the dose distribution and obtain the dose curve of the central axis of the field. The dose is verified with thermoluminescence dose tablets. RESULTS: The micro-computed tomography images of the tracheal stent are clearer and less false-like than its conventional computed tomography images. The planned dose curves of the 2 groups are similar. In comparison with the images without any stents in place, the doses at the incident surface of the stent in the conventional computed tomography images and at the stent exit surface in the rear of the stent increase by 1.86% and 2.76%, respectively. In the micro-computed tomography images, the doses at the incident surface of the stent and at the exit surface behind the stent increase by 1.32% and 1.19%, respectively. Conventional computed tomography reveals a large deviation between the measured and calculated values. CONCLUSION: Tracheal stent based on micro-computed tomography imaging has a less effect on radiotherapy calculation than that based on conventional computed tomography imaging.
format Online
Article
Text
id pubmed-6480982
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-64809822019-04-30 Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging Lin, Tao Ni, Xinye Gao, Liugang Sui, Jianfeng Xie, Kai Chang, Shuquan Technol Cancer Res Treat Original Article PURPOSE: To study the effect of a metal tracheal stent on radiation dose distribution. METHOD: A metal tube bracket is placed in a self-made foam tube sleeve, and micro-computed tomography scanning is performed directly. The foam sleeve containing the metal bracket is placed in a nonuniform phantom for a routine computed tomography scan. The stents in conventional computed tomography images are replaced by the stents in micro-computed tomography images. Subsequently, 2 sets of computed tomography images are obtained and then imported to a radiotherapy treatment planning system. A single photon beam at 0° is designed in a field size of 10 cm × 10 cm, a photon beam of 6 MV, and a monitor unit of 200 MU. Monte Carlo algorithm is used to calculate the dose distribution and obtain the dose curve of the central axis of the field. The dose is verified with thermoluminescence dose tablets. RESULTS: The micro-computed tomography images of the tracheal stent are clearer and less false-like than its conventional computed tomography images. The planned dose curves of the 2 groups are similar. In comparison with the images without any stents in place, the doses at the incident surface of the stent in the conventional computed tomography images and at the stent exit surface in the rear of the stent increase by 1.86% and 2.76%, respectively. In the micro-computed tomography images, the doses at the incident surface of the stent and at the exit surface behind the stent increase by 1.32% and 1.19%, respectively. Conventional computed tomography reveals a large deviation between the measured and calculated values. CONCLUSION: Tracheal stent based on micro-computed tomography imaging has a less effect on radiotherapy calculation than that based on conventional computed tomography imaging. SAGE Publications 2019-04-22 /pmc/articles/PMC6480982/ /pubmed/31010405 http://dx.doi.org/10.1177/1533033819844485 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Article
Lin, Tao
Ni, Xinye
Gao, Liugang
Sui, Jianfeng
Xie, Kai
Chang, Shuquan
Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging
title Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging
title_full Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging
title_fullStr Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging
title_full_unstemmed Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging
title_short Evaluation of the Effect of a Tracheal Stent on Radiation Dose Distribution via Micro-CT Imaging
title_sort evaluation of the effect of a tracheal stent on radiation dose distribution via micro-ct imaging
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480982/
https://www.ncbi.nlm.nih.gov/pubmed/31010405
http://dx.doi.org/10.1177/1533033819844485
work_keys_str_mv AT lintao evaluationoftheeffectofatrachealstentonradiationdosedistributionviamicroctimaging
AT nixinye evaluationoftheeffectofatrachealstentonradiationdosedistributionviamicroctimaging
AT gaoliugang evaluationoftheeffectofatrachealstentonradiationdosedistributionviamicroctimaging
AT suijianfeng evaluationoftheeffectofatrachealstentonradiationdosedistributionviamicroctimaging
AT xiekai evaluationoftheeffectofatrachealstentonradiationdosedistributionviamicroctimaging
AT changshuquan evaluationoftheeffectofatrachealstentonradiationdosedistributionviamicroctimaging