Cargando…
Brain Tumor Segmentation Based on Hybrid Clustering and Morphological Operations
Inference of tumor and edema areas from brain magnetic resonance imaging (MRI) data remains challenging owing to the complex structure of brain tumors, blurred boundaries, and external factors such as noise. To alleviate noise sensitivity and improve the stability of segmentation, an effective hybri...
Autores principales: | Zhang, Chong, Shen, Xuanjing, Cheng, Hang, Qian, Qingji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481128/ https://www.ncbi.nlm.nih.gov/pubmed/31093268 http://dx.doi.org/10.1155/2019/7305832 |
Ejemplares similares
-
Image Segmentation of Brain MRI Based on LTriDP and Superpixels of Improved SLIC
por: Wang, Yu, et al.
Publicado: (2020) -
A Novel Histogram Region Merging Based Multithreshold Segmentation Algorithm for MR Brain Images
por: Liu, Siyan, et al.
Publicado: (2017) -
Deep Learning Hybrid Techniques for Brain Tumor Segmentation
por: Munir, Khushboo, et al.
Publicado: (2022) -
Learning rich features with hybrid loss for brain tumor segmentation
por: Huang, Daobin, et al.
Publicado: (2021) -
Review on Hybrid Segmentation Methods for Identification of Brain Tumor in MRI
por: Ejaz, Khurram, et al.
Publicado: (2022)