Cargando…
Exploring completeness in clinical data research networks with DQ(e)-c
OBJECTIVE: To provide an open source, interoperable, and scalable data quality assessment tool for evaluation and visualization of completeness and conformance in electronic health record (EHR) data repositories. MATERIALS AND METHODS: This article describes the tool’s design and architecture and gi...
Autores principales: | Estiri, Hossein, Stephens, Kari A, Klann, Jeffrey G, Murphy, Shawn N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481389/ https://www.ncbi.nlm.nih.gov/pubmed/29069394 http://dx.doi.org/10.1093/jamia/ocx109 |
Ejemplares similares
-
DQ(e)-v: A Database-Agnostic Framework for Exploring Variability in Electronic Health Record Data Across Time and Site Location
por: Estiri, Hossein, et al.
Publicado: (2017) -
A broadly applicable approach to enrich electronic-health-record cohorts by identifying patients with complete data: a multisite evaluation
por: Klann, Jeffrey G, et al.
Publicado: (2023) -
A federated EHR network data completeness tracking system
por: Estiri, Hossein, et al.
Publicado: (2019) -
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes
por: Estiri, Hossein, et al.
Publicado: (2022) -
A clustering approach for detecting implausible observation values in electronic health records data
por: Estiri, Hossein, et al.
Publicado: (2019)