Cargando…
Covariate association eliminating weights: a unified weighting framework for causal effect estimation
Weighting methods offer an approach to estimating causal treatment effects in observational studies. However, if weights are estimated by maximum likelihood, misspecification of the treatment assignment model can lead to weighted estimators with substantial bias and variance. In this paper, we propo...
Autores principales: | Yiu, Sean, Su, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481550/ https://www.ncbi.nlm.nih.gov/pubmed/31031408 http://dx.doi.org/10.1093/biomet/asy015 |
Ejemplares similares
-
A Unifying Framework for Measuring Weighted Rich Clubs
por: Alstott, Jeff, et al.
Publicado: (2014) -
Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models
por: Yiu, Sean, et al.
Publicado: (2020) -
Quantitative shape analysis with weighted covariance estimates for increased statistical efficiency
por: Ragheb, Hossein, et al.
Publicado: (2013) -
Generally Covariant Unified Field Theory
por: Evans, Myron
Publicado: (2007) -
Sensitivity analysis for calibrated inverse probability-of-censoring
weighted estimators under non-ignorable dropout
por: Su, Li, et al.
Publicado: (2022)