Cargando…
Non-steric-zipper models for pathogenic α-synuclein conformers
Parkinson's disease neurodegenerative brain tissue exhibits two biophysically distinct α-synuclein fiber isoforms—single stranded fibers that appear to be steric-zippers and double-stranded fibers with an undetermined structure. Herein, we describe a β-helical homology model of α-synuclein that...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481714/ https://www.ncbi.nlm.nih.gov/pubmed/31069302 http://dx.doi.org/10.1063/1.5023460 |
Sumario: | Parkinson's disease neurodegenerative brain tissue exhibits two biophysically distinct α-synuclein fiber isoforms—single stranded fibers that appear to be steric-zippers and double-stranded fibers with an undetermined structure. Herein, we describe a β-helical homology model of α-synuclein that exhibits stability in probabilistic and Monte Carlo simulations as a candidate for stable prional dimer conformers in equilibrium with double-stranded fibers and cytotoxic pore assemblies. Molecular models of β-helical pore assemblies are consistent with α-synuclein(A53T) transfected rat immunofluorescence epitope maps. Atomic force microscopy reveals that α-synuclein peptides aggregate into anisotropic fibrils lacking the density or circumference of a steric-zipper. Moreover, fibrillation was blocked by mutations designed to hinder β-helical but not steric-zipper conformations. β-helical species provide a structural basis for previously described biophysical properties that are incompatible with a steric-zipper, provide pathogenic mechanisms for familial human α-synuclein mutations, and offer a direct cytotoxic target for therapeutic development. |
---|