Cargando…
Multi-sample deformability cytometry of cancer cells
There is growing recognition that cell deformability can play an important role in cancer metastasis and diagnostics. Advancement of methods to characterize cell deformability in a high throughput manner and the capacity to process numerous samples can impact cancer-related applications ranging from...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481721/ https://www.ncbi.nlm.nih.gov/pubmed/31069319 http://dx.doi.org/10.1063/1.5020992 |
_version_ | 1783413781387280384 |
---|---|
author | Ahmmed, Shamim M. Bithi, Swastika S. Pore, Adity A. Mubtasim, Noshin Schuster, Caroline Gollahon, Lauren S. Vanapalli, Siva A. |
author_facet | Ahmmed, Shamim M. Bithi, Swastika S. Pore, Adity A. Mubtasim, Noshin Schuster, Caroline Gollahon, Lauren S. Vanapalli, Siva A. |
author_sort | Ahmmed, Shamim M. |
collection | PubMed |
description | There is growing recognition that cell deformability can play an important role in cancer metastasis and diagnostics. Advancement of methods to characterize cell deformability in a high throughput manner and the capacity to process numerous samples can impact cancer-related applications ranging from analysis of patient samples to discovery of anti-cancer compounds to screening of oncogenes. In this study, we report a microfluidic technique called multi-sample deformability cytometry (MS-DC) that allows simultaneous measurement of flow-induced deformation of cells in multiple samples at single-cell resolution using a combination of on-chip reservoirs, distributed pressure control, and data analysis system. Cells are introduced at rates of O(100) cells per second with a data processing speed of 10 min per sample. To validate MS-DC, we tested more than 50 cell-samples that include cancer cell lines with different metastatic potential and cells treated with several cytoskeletal-intervention drugs. Results from MS-DC show that (i) the cell deformability correlates with metastatic potential for both breast and prostate cancer cells but not with their molecular histotype, (ii) the strongly metastatic breast cancer cells have higher deformability than the weakly metastatic ones; however, the strongly metastatic prostate cancer cells have lower deformability than the weakly metastatic counterparts, and (iii) drug-induced disruption of the actin network, microtubule network, and actomyosin contractility increased cancer cell deformability, but stabilization of the cytoskeletal proteins does not alter deformability significantly. Our study demonstrates the capacity of MS-DC to mechanically phenotype tumor cells simultaneously in many samples for cancer research. |
format | Online Article Text |
id | pubmed-6481721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | AIP Publishing LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-64817212019-05-08 Multi-sample deformability cytometry of cancer cells Ahmmed, Shamim M. Bithi, Swastika S. Pore, Adity A. Mubtasim, Noshin Schuster, Caroline Gollahon, Lauren S. Vanapalli, Siva A. APL Bioeng Special Topic: Bioengineering of Cancer There is growing recognition that cell deformability can play an important role in cancer metastasis and diagnostics. Advancement of methods to characterize cell deformability in a high throughput manner and the capacity to process numerous samples can impact cancer-related applications ranging from analysis of patient samples to discovery of anti-cancer compounds to screening of oncogenes. In this study, we report a microfluidic technique called multi-sample deformability cytometry (MS-DC) that allows simultaneous measurement of flow-induced deformation of cells in multiple samples at single-cell resolution using a combination of on-chip reservoirs, distributed pressure control, and data analysis system. Cells are introduced at rates of O(100) cells per second with a data processing speed of 10 min per sample. To validate MS-DC, we tested more than 50 cell-samples that include cancer cell lines with different metastatic potential and cells treated with several cytoskeletal-intervention drugs. Results from MS-DC show that (i) the cell deformability correlates with metastatic potential for both breast and prostate cancer cells but not with their molecular histotype, (ii) the strongly metastatic breast cancer cells have higher deformability than the weakly metastatic ones; however, the strongly metastatic prostate cancer cells have lower deformability than the weakly metastatic counterparts, and (iii) drug-induced disruption of the actin network, microtubule network, and actomyosin contractility increased cancer cell deformability, but stabilization of the cytoskeletal proteins does not alter deformability significantly. Our study demonstrates the capacity of MS-DC to mechanically phenotype tumor cells simultaneously in many samples for cancer research. AIP Publishing LLC 2018-06-21 /pmc/articles/PMC6481721/ /pubmed/31069319 http://dx.doi.org/10.1063/1.5020992 Text en © 2018 Author(s). 2473-2877/2018/2(3)/032002/14 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Special Topic: Bioengineering of Cancer Ahmmed, Shamim M. Bithi, Swastika S. Pore, Adity A. Mubtasim, Noshin Schuster, Caroline Gollahon, Lauren S. Vanapalli, Siva A. Multi-sample deformability cytometry of cancer cells |
title | Multi-sample deformability cytometry of cancer cells |
title_full | Multi-sample deformability cytometry of cancer cells |
title_fullStr | Multi-sample deformability cytometry of cancer cells |
title_full_unstemmed | Multi-sample deformability cytometry of cancer cells |
title_short | Multi-sample deformability cytometry of cancer cells |
title_sort | multi-sample deformability cytometry of cancer cells |
topic | Special Topic: Bioengineering of Cancer |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481721/ https://www.ncbi.nlm.nih.gov/pubmed/31069319 http://dx.doi.org/10.1063/1.5020992 |
work_keys_str_mv | AT ahmmedshamimm multisampledeformabilitycytometryofcancercells AT bithiswastikas multisampledeformabilitycytometryofcancercells AT poreaditya multisampledeformabilitycytometryofcancercells AT mubtasimnoshin multisampledeformabilitycytometryofcancercells AT schustercaroline multisampledeformabilitycytometryofcancercells AT gollahonlaurens multisampledeformabilitycytometryofcancercells AT vanapallisivaa multisampledeformabilitycytometryofcancercells |