Cargando…
Weakly supervised natural language processing for assessing patient-centered outcome following prostate cancer treatment
BACKGROUND: The population-based assessment of patient-centered outcomes (PCOs) has been limited by the efficient and accurate collection of these data. Natural language processing (NLP) pipelines can determine whether a clinical note within an electronic medical record contains evidence on these da...
Autores principales: | Banerjee, Imon, Li, Kevin, Seneviratne, Martin, Ferrari, Michelle, Seto, Tina, Brooks, James D, Rubin, Daniel L, Hernandez-Boussard, Tina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482003/ https://www.ncbi.nlm.nih.gov/pubmed/31032481 http://dx.doi.org/10.1093/jamiaopen/ooy057 |
Ejemplares similares
-
Architecture and Implementation of a Clinical Research Data Warehouse for Prostate Cancer
por: Seneviratne, Martin G., et al.
Publicado: (2018) -
Phenotyping severity of patient‐centered outcomes using clinical notes: A prostate cancer use case
por: Bozkurt, Selen, et al.
Publicado: (2020) -
Weakly supervised temporal model for prediction of breast cancer distant recurrence
por: Sanyal, Josh, et al.
Publicado: (2021) -
Clinical Documentation to Predict Factors Associated with Urinary Incontinence Following Prostatectomy for Prostate Cancer
por: Li, Kevin, et al.
Publicado: (2020) -
Extracting Patient-Centered Outcomes from Clinical Notes in Electronic Health Records: Assessment of Urinary Incontinence After Radical Prostatectomy
por: Gori, Davide, et al.
Publicado: (2019)