Cargando…

Massive corals maintain a positive carbonate budget of a Maldivian upper reef platform despite major bleaching event

Coral reefs experienced the third global bleaching event in 2015–2016 due to high sea-surface temperature (SST) anomalies. Declines in net carbonate production associated with coral bleaching are implicated in reef structural collapse and cascading impacts for adjacent coral reef islands. We present...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryan, E. J., Hanmer, K., Kench, P. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482145/
https://www.ncbi.nlm.nih.gov/pubmed/31019243
http://dx.doi.org/10.1038/s41598-019-42985-2
Descripción
Sumario:Coral reefs experienced the third global bleaching event in 2015–2016 due to high sea-surface temperature (SST) anomalies. Declines in net carbonate production associated with coral bleaching are implicated in reef structural collapse and cascading impacts for adjacent coral reef islands. We present the first carbonate budget study of a reef platform surface (reef crest and reef flat) in the southern Maldives and the first record of upper reef flat condition in the central Indian Ocean post the 2015–2016 coral bleaching event. Scleractinian corals were the primary carbonate producers, with live coral cover averaging between 11.1 ± 6.5 and 31.2 ± 21.8% and dominated by massive corals. Gross carbonate production rates averaged 5.9 ± 2.5 G (kg CaCO(3) m(2) yr(−1)). Bioerosion was estimated at 3.4 ± 0.4 G, resulting in an average net carbonate production rate of 2.5 ± 2.4 G. Comparison of results with a study of the fore-reef slope highlights major differences in post-bleaching carbonate budget state between the fore-reef slope and the reef platform surface. The positive reef flat carbonate budget is attributed to the persistence of massive corals (Porites spp. and Heliopora spp.) through the bleaching event.