Cargando…
Accurate early prediction of tumour response to PDT using optical coherence angiography
Prediction of tumour treatment response may play a crucial role in therapy selection and optimization of its delivery parameters. Here we use optical coherence angiography (OCA) as a minimally-invasive, label-free, real-time bioimaging method to visualize normal and pathological perfused vessels and...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482310/ https://www.ncbi.nlm.nih.gov/pubmed/31019242 http://dx.doi.org/10.1038/s41598-019-43084-y |
Sumario: | Prediction of tumour treatment response may play a crucial role in therapy selection and optimization of its delivery parameters. Here we use optical coherence angiography (OCA) as a minimally-invasive, label-free, real-time bioimaging method to visualize normal and pathological perfused vessels and monitor treatment response following vascular-targeted photodynamic therapy (PDT). Preclinical results are reported in a convenient experimental model (CT-26 colon tumour inoculated in murine ear), enabling controlled PDT and post-treatment OCA monitoring. To accurately predict long-term treatment outcome, a robust and simple microvascular metric is proposed. It is based on perfused vessels density (PVD) at t = 24 hours post PDT, calculated for both tumour and peri-tumour regions. Histological validation in the examined experimental cohort (n = 31 animals) enabled further insight into the excellent predictive power of the derived early-response OCA microvascular metric. The results underscore the key role of peri-tumour microvasculature in determining the long-term PDT response. |
---|