Cargando…

Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation

[Image: see text] Aberration-corrected transmission electron microscopy of the atomic structure of diamond–graphite interface after Ni-induced catalytic transformation reveals graphitic planes bound covalently to the diamond in the upright orientation. The covalent attachment, together with a signif...

Descripción completa

Detalles Bibliográficos
Autores principales: Tulić, Semir, Waitz, Thomas, Čaplovičová, Mária, Habler, Gerlinde, Varga, Marián, Kotlár, Mário, Vretenár, Viliam, Romanyuk, Oleksandr, Kromka, Alexander, Rezek, Bohuslav, Skákalová, Viera
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482437/
https://www.ncbi.nlm.nih.gov/pubmed/30883098
http://dx.doi.org/10.1021/acsnano.9b00692
_version_ 1783413884684599296
author Tulić, Semir
Waitz, Thomas
Čaplovičová, Mária
Habler, Gerlinde
Varga, Marián
Kotlár, Mário
Vretenár, Viliam
Romanyuk, Oleksandr
Kromka, Alexander
Rezek, Bohuslav
Skákalová, Viera
author_facet Tulić, Semir
Waitz, Thomas
Čaplovičová, Mária
Habler, Gerlinde
Varga, Marián
Kotlár, Mário
Vretenár, Viliam
Romanyuk, Oleksandr
Kromka, Alexander
Rezek, Bohuslav
Skákalová, Viera
author_sort Tulić, Semir
collection PubMed
description [Image: see text] Aberration-corrected transmission electron microscopy of the atomic structure of diamond–graphite interface after Ni-induced catalytic transformation reveals graphitic planes bound covalently to the diamond in the upright orientation. The covalent attachment, together with a significant volume expansion of graphite transformed from diamond, gives rise to uniaxial stress that is released through plastic deformation. We propose a comprehensive model explaining the Ni-mediated transformation of diamond to graphite and covalent bonding at the interface as well as the mechanism of relaxation of uniaxial stress. We also explain the mechanism of electrical transport through the graphitized surface of diamond. The result may thus provide a foundation for the catalytically driven formation of graphene–diamond nanodevices.
format Online
Article
Text
id pubmed-6482437
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-64824372019-04-26 Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation Tulić, Semir Waitz, Thomas Čaplovičová, Mária Habler, Gerlinde Varga, Marián Kotlár, Mário Vretenár, Viliam Romanyuk, Oleksandr Kromka, Alexander Rezek, Bohuslav Skákalová, Viera ACS Nano [Image: see text] Aberration-corrected transmission electron microscopy of the atomic structure of diamond–graphite interface after Ni-induced catalytic transformation reveals graphitic planes bound covalently to the diamond in the upright orientation. The covalent attachment, together with a significant volume expansion of graphite transformed from diamond, gives rise to uniaxial stress that is released through plastic deformation. We propose a comprehensive model explaining the Ni-mediated transformation of diamond to graphite and covalent bonding at the interface as well as the mechanism of relaxation of uniaxial stress. We also explain the mechanism of electrical transport through the graphitized surface of diamond. The result may thus provide a foundation for the catalytically driven formation of graphene–diamond nanodevices. American Chemical Society 2019-03-18 2019-04-23 /pmc/articles/PMC6482437/ /pubmed/30883098 http://dx.doi.org/10.1021/acsnano.9b00692 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Tulić, Semir
Waitz, Thomas
Čaplovičová, Mária
Habler, Gerlinde
Varga, Marián
Kotlár, Mário
Vretenár, Viliam
Romanyuk, Oleksandr
Kromka, Alexander
Rezek, Bohuslav
Skákalová, Viera
Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation
title Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation
title_full Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation
title_fullStr Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation
title_full_unstemmed Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation
title_short Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation
title_sort covalent diamond–graphite bonding: mechanism of catalytic transformation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482437/
https://www.ncbi.nlm.nih.gov/pubmed/30883098
http://dx.doi.org/10.1021/acsnano.9b00692
work_keys_str_mv AT tulicsemir covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT waitzthomas covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT caplovicovamaria covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT hablergerlinde covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT vargamarian covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT kotlarmario covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT vretenarviliam covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT romanyukoleksandr covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT kromkaalexander covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT rezekbohuslav covalentdiamondgraphitebondingmechanismofcatalytictransformation
AT skakalovaviera covalentdiamondgraphitebondingmechanismofcatalytictransformation