Cargando…

CAMKII as a therapeutic target for growth factor–induced retinal and choroidal neovascularization

While anti-VEGF drugs are commonly used to inhibit pathological retinal and choroidal neovascularization, not all patients respond in an optimal manner. Mechanisms underpinning resistance to anti‑VEGF therapy include the upregulation of other proangiogenic factors. Therefore, therapeutic strategies...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashraf, Sadaf, Bell, Samuel, O’Leary, Caitriona, Canning, Paul, Micu, Ileana, Fernandez, Jose A., O’Hare, Michael, Barabas, Peter, McCauley, Hannah, Brazil, Derek P., Stitt, Alan W., McGeown, J. Graham, Curtis, Tim M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482993/
https://www.ncbi.nlm.nih.gov/pubmed/30721154
http://dx.doi.org/10.1172/jci.insight.122442
Descripción
Sumario:While anti-VEGF drugs are commonly used to inhibit pathological retinal and choroidal neovascularization, not all patients respond in an optimal manner. Mechanisms underpinning resistance to anti‑VEGF therapy include the upregulation of other proangiogenic factors. Therefore, therapeutic strategies that simultaneously target multiple growth factor signaling pathways would have significant value. Here, we show that Ca(2+)/calmodulin-dependent kinase II (CAMKII) mediates the angiogenic actions of a range of growth factors in human retinal endothelial cells and that this kinase acts as a key nodal point for the activation of several signal transduction cascades that are known to play a critical role in growth factor–induced angiogenesis. We also demonstrate that endothelial CAMKIIγ and -δ isoforms differentially regulate the angiogenic effects of different growth factors and that genetic deletion of these isoforms suppresses pathological retinal and choroidal neovascularization in vivo. Our studies suggest that CAMKII could provide a novel and efficacious target to inhibit multiple angiogenic signaling pathways for the treatment of vasoproliferative diseases of the eye. CAMKIIγ represents a particularly promising target, as deletion of this isoform inhibited pathological neovascularization, while enhancing reparative angiogenesis in the ischemic retina.