Cargando…
Radiative transfer modelling reveals why canopy reflectance follows function
Optical remote sensing is potentially highly informative to track Earth’s plant functional diversity. Yet, causal explanations of how and why plant functioning is expressed in canopy reflectance remain limited. Variation in canopy reflectance can be described by radiative transfer models (here PROSA...
Autores principales: | Kattenborn, Teja, Schmidtlein, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484002/ https://www.ncbi.nlm.nih.gov/pubmed/31024052 http://dx.doi.org/10.1038/s41598-019-43011-1 |
Ejemplares similares
-
Deep learning and citizen science enable automated plant trait predictions from photographs
por: Schiller, Christopher, et al.
Publicado: (2021) -
Automated mapping of Portulacaria afra canopies for restoration monitoring with convolutional neural networks and heterogeneous unmanned aerial vehicle imagery
por: Galuszynski, Nicholas C., et al.
Publicado: (2022) -
Canopy near-infrared reflectance and terrestrial photosynthesis
por: Badgley, Grayson, et al.
Publicado: (2017) -
Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline
por: Zarco-Tejada, P.J., et al.
Publicado: (2019) -
Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
por: Kattenborn, Teja, et al.
Publicado: (2019)