Cargando…

High-throughput sequencing reveals the diversity and community structure of rhizosphere fungi of Ferula Sinkiangensis at different soil depths

Ferula sinkiangesis is a valuable medicinal plant that has become endangered. Improving the soil habitat of Ferula sinkiangesis can alleviate plant damage. Fungi play an important role in the soil, but current information on the fungal community structure in the habitat of Ferula sinkiangesis and th...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tao, Wang, Zhongke, Lv, Xinhua, Li, Yang, Zhuang, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484027/
https://www.ncbi.nlm.nih.gov/pubmed/31024051
http://dx.doi.org/10.1038/s41598-019-43110-z
Descripción
Sumario:Ferula sinkiangesis is a valuable medicinal plant that has become endangered. Improving the soil habitat of Ferula sinkiangesis can alleviate plant damage. Fungi play an important role in the soil, but current information on the fungal community structure in the habitat of Ferula sinkiangesis and the relationship between soil fungi and abiotic factors remains unclear. In this study, we analyzed the relative abundance of fungal species in the rhizosphere of Ferula sinkiangesis. Spearman correlation analysis showed that the abiotic factor total potassium (TK) significantly explained the alpha diversity of the fungal community. At altitude, available phosphorus (AP), nitrate nitrogen (NN) and TK were significantly associated with the fungal species. In addition, a two-way ANOVA showed that soil depth had no significant effects on the alpha diversity of rhizosphere and non-rhizosphere fungi. Interestingly, linear discriminant effect size (LEfSe) analysis indicated that different biomarkers were present at varying soil depths. These findings may be related to the growth and medicinal properties of Ferula Sinkiangensis.