Cargando…
Using Twitter Data to Monitor Natural Disaster Social Dynamics: A Recurrent Neural Network Approach with Word Embeddings and Kernel Density Estimation
In recent years, Online Social Networks (OSNs) have received a great deal of attention for their potential use in the spatial and temporal modeling of events owing to the information that can be extracted from these platforms. Within this context, one of the most latent applications is the monitorin...
Autores principales: | Hernandez-Suarez, Aldo, Sanchez-Perez, Gabriel, Toscano-Medina, Karina, Perez-Meana, Hector, Portillo-Portillo, Jose, Sanchez, Victor, García Villalba, Luis Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484392/ https://www.ncbi.nlm.nih.gov/pubmed/30979067 http://dx.doi.org/10.3390/s19071746 |
Ejemplares similares
-
Social Sentiment Sensor in Twitter for Predicting Cyber-Attacks Using ℓ(1) Regularization
por: Hernandez-Suarez, Aldo, et al.
Publicado: (2018) -
Vehicle Counting in Video Sequences: An Incremental Subspace Learning Approach
por: Rosas-Arias, Leonel, et al.
Publicado: (2019) -
A Dense Neural Network Approach for Detecting Clone ID Attacks on the RPL Protocol of the IoT
por: Morales-Molina, Carlos D., et al.
Publicado: (2021) -
Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis
por: Portillo-Portillo, Jose, et al.
Publicado: (2016) -
FASSVid: Fast and Accurate Semantic Segmentation for Video Sequences
por: Portillo-Portillo, Jose, et al.
Publicado: (2022)