Cargando…
Evaluation of Machine Learning Classifiers to Predict Compound Mechanism of Action When Transferred across Distinct Cell Lines
Multiparametric high-content imaging assays have become established to classify cell phenotypes from functional genomic and small-molecule library screening assays. Several groups have implemented machine learning classifiers to predict the mechanism of action of phenotypic hit compounds by comparin...
Autores principales: | Warchal, Scott J., Dawson, John C., Carragher, Neil O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484528/ https://www.ncbi.nlm.nih.gov/pubmed/30694704 http://dx.doi.org/10.1177/2472555218820805 |
Ejemplares similares
-
Development of the Theta Comparative Cell Scoring Method to Quantify Diverse Phenotypic Responses Between Distinct Cell Types
por: Warchal, Scott J., et al.
Publicado: (2016) -
Development of machine learning classifiers to predict compound activity on prostate cancer cell lines
por: Bonanni, Davide, et al.
Publicado: (2022) -
High content phenotypic screening identifies serotonin receptor modulators with selective activity upon breast cancer cell cycle and cytokine signaling pathways
por: Warchal, Scott J., et al.
Publicado: (2020) -
GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds
por: Ahmed, Marawan, et al.
Publicado: (2021) -
New Interfaces and Approaches to Machine Learning When Classifying Gestures within Music
por: Rhodes, Chris, et al.
Publicado: (2020)