Cargando…
Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions
IMPORTANCE: Hospital readmissions are associated with patient harm and expense. Ways to prevent hospital readmissions have focused on identifying patients at greatest risk using prediction scores. OBJECTIVE: To identify the type of score that best predicts hospital readmissions. DESIGN, SETTING, AND...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484642/ https://www.ncbi.nlm.nih.gov/pubmed/30848808 http://dx.doi.org/10.1001/jamanetworkopen.2019.0348 |
_version_ | 1783414153613934592 |
---|---|
author | Morgan, Daniel J. Bame, Bill Zimand, Paul Dooley, Patrick Thom, Kerri A. Harris, Anthony D. Bentzen, Soren Ettinger, Walt Garrett-Ray, Stacy D. Tracy, J. Kathleen Liang, Yuanyuan |
author_facet | Morgan, Daniel J. Bame, Bill Zimand, Paul Dooley, Patrick Thom, Kerri A. Harris, Anthony D. Bentzen, Soren Ettinger, Walt Garrett-Ray, Stacy D. Tracy, J. Kathleen Liang, Yuanyuan |
author_sort | Morgan, Daniel J. |
collection | PubMed |
description | IMPORTANCE: Hospital readmissions are associated with patient harm and expense. Ways to prevent hospital readmissions have focused on identifying patients at greatest risk using prediction scores. OBJECTIVE: To identify the type of score that best predicts hospital readmissions. DESIGN, SETTING, AND PARTICIPANTS: This prognostic study included 14 062 consecutive adult hospital patients with 16 649 discharges from a tertiary care center, suburban community hospital, and urban critical access hospital in Maryland from September 1, 2016, through December 31, 2016. Patients not included as eligible discharges by the Centers for Medicare & Medicaid Services or the Chesapeake Regional Information System for Our Patients were excluded. A machine learning rank score, the Baltimore score (B score) developed using a machine learning technique, for each individual hospital using data from the 2 years before September 1, 2016, was compared with standard readmission risk assessment scores to predict 30-day unplanned readmissions. MAIN OUTCOMES AND MEASURES: The 30-day readmission rate evaluated using various readmission scores: B score, HOSPITAL score, modified LACE score, and Maxim/RightCare score. RESULTS: Of the 10 732 patients (5605 [52.2%] male; mean [SD] age, 54.56 [22.42] years) deemed to be eligible for the study, 1422 were readmitted. The area under the receiver operating characteristic curve (AUROC) for individual rules was 0.63 (95% CI, 0.61-0.65) for the HOSPITAL score, which was significantly lower than the 0.66 for modified LACE score (95% CI, 0.64-0.68; P < .001). The B score machine learning score was significantly better than all other scores; 48 hours after admission, the AUROC of the B score was 0.72 (95% CI, 0.70-0.73), which increased to 0.78 (95% CI, 0.77-0.79) at discharge (all P < .001). At the hospital using Maxim/RightCare score, the AUROC was 0.63 (95% CI, 0.59-0.69) for HOSPITAL, 0.64 (95% CI, 0.61-0.68) for Maxim/RightCare, and 0.66 (95% CI, 0.62-0.69) for modified LACE score. The B score was 0.72 (95% CI, 0.69-0.75) 48 hours after admission and 0.81 (95% CI, 0.79-0.84) at discharge. In directly comparing the B score with the sensitivity at cutoff values for modified LACE, HOSPITAL, and Maxim/RightCare scores, the B score was able to identify the same number of readmitted patients while flagging 25.5% to 54.9% fewer patients. CONCLUSIONS AND RELEVANCE: Among 3 hospitals in different settings, an automated machine learning score better predicted readmissions than commonly used readmission scores. More efficiently targeting patients at higher risk of readmission may be the first step toward potentially preventing readmissions. |
format | Online Article Text |
id | pubmed-6484642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Medical Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-64846422019-05-21 Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions Morgan, Daniel J. Bame, Bill Zimand, Paul Dooley, Patrick Thom, Kerri A. Harris, Anthony D. Bentzen, Soren Ettinger, Walt Garrett-Ray, Stacy D. Tracy, J. Kathleen Liang, Yuanyuan JAMA Netw Open Original Investigation IMPORTANCE: Hospital readmissions are associated with patient harm and expense. Ways to prevent hospital readmissions have focused on identifying patients at greatest risk using prediction scores. OBJECTIVE: To identify the type of score that best predicts hospital readmissions. DESIGN, SETTING, AND PARTICIPANTS: This prognostic study included 14 062 consecutive adult hospital patients with 16 649 discharges from a tertiary care center, suburban community hospital, and urban critical access hospital in Maryland from September 1, 2016, through December 31, 2016. Patients not included as eligible discharges by the Centers for Medicare & Medicaid Services or the Chesapeake Regional Information System for Our Patients were excluded. A machine learning rank score, the Baltimore score (B score) developed using a machine learning technique, for each individual hospital using data from the 2 years before September 1, 2016, was compared with standard readmission risk assessment scores to predict 30-day unplanned readmissions. MAIN OUTCOMES AND MEASURES: The 30-day readmission rate evaluated using various readmission scores: B score, HOSPITAL score, modified LACE score, and Maxim/RightCare score. RESULTS: Of the 10 732 patients (5605 [52.2%] male; mean [SD] age, 54.56 [22.42] years) deemed to be eligible for the study, 1422 were readmitted. The area under the receiver operating characteristic curve (AUROC) for individual rules was 0.63 (95% CI, 0.61-0.65) for the HOSPITAL score, which was significantly lower than the 0.66 for modified LACE score (95% CI, 0.64-0.68; P < .001). The B score machine learning score was significantly better than all other scores; 48 hours after admission, the AUROC of the B score was 0.72 (95% CI, 0.70-0.73), which increased to 0.78 (95% CI, 0.77-0.79) at discharge (all P < .001). At the hospital using Maxim/RightCare score, the AUROC was 0.63 (95% CI, 0.59-0.69) for HOSPITAL, 0.64 (95% CI, 0.61-0.68) for Maxim/RightCare, and 0.66 (95% CI, 0.62-0.69) for modified LACE score. The B score was 0.72 (95% CI, 0.69-0.75) 48 hours after admission and 0.81 (95% CI, 0.79-0.84) at discharge. In directly comparing the B score with the sensitivity at cutoff values for modified LACE, HOSPITAL, and Maxim/RightCare scores, the B score was able to identify the same number of readmitted patients while flagging 25.5% to 54.9% fewer patients. CONCLUSIONS AND RELEVANCE: Among 3 hospitals in different settings, an automated machine learning score better predicted readmissions than commonly used readmission scores. More efficiently targeting patients at higher risk of readmission may be the first step toward potentially preventing readmissions. American Medical Association 2019-03-08 /pmc/articles/PMC6484642/ /pubmed/30848808 http://dx.doi.org/10.1001/jamanetworkopen.2019.0348 Text en Copyright 2019 Morgan DJ et al. JAMA Network Open. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the CC-BY License. |
spellingShingle | Original Investigation Morgan, Daniel J. Bame, Bill Zimand, Paul Dooley, Patrick Thom, Kerri A. Harris, Anthony D. Bentzen, Soren Ettinger, Walt Garrett-Ray, Stacy D. Tracy, J. Kathleen Liang, Yuanyuan Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions |
title | Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions |
title_full | Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions |
title_fullStr | Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions |
title_full_unstemmed | Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions |
title_short | Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions |
title_sort | assessment of machine learning vs standard prediction rules for predicting hospital readmissions |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484642/ https://www.ncbi.nlm.nih.gov/pubmed/30848808 http://dx.doi.org/10.1001/jamanetworkopen.2019.0348 |
work_keys_str_mv | AT morgandanielj assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT bamebill assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT zimandpaul assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT dooleypatrick assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT thomkerria assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT harrisanthonyd assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT bentzensoren assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT ettingerwalt assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT garrettraystacyd assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT tracyjkathleen assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions AT liangyuanyuan assessmentofmachinelearningvsstandardpredictionrulesforpredictinghospitalreadmissions |