Cargando…
Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis
IMPORTANCE: Knowing the future condition of a patient would enable a physician to customize current therapeutic options to prevent disease worsening, but predicting that future condition requires sophisticated modeling and information. If artificial intelligence models were capable of forecasting fu...
Autores principales: | Norgeot, Beau, Glicksberg, Benjamin S., Trupin, Laura, Lituiev, Dmytro, Gianfrancesco, Milena, Oskotsky, Boris, Schmajuk, Gabriela, Yazdany, Jinoos, Butte, Atul J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484652/ https://www.ncbi.nlm.nih.gov/pubmed/30874779 http://dx.doi.org/10.1001/jamanetworkopen.2019.0606 |
Ejemplares similares
-
Differences in Longitudinal Disease Activity Between Research Cohort and Noncohort Participants with Rheumatoid Arthritis Using Electronic Health Record Data
por: Gianfrancesco, Milena A., et al.
Publicado: (2019) -
Capturing a Patient-Reported Measure of Physical Function Through an Online Electronic Health Record Patient Portal in an Ambulatory Clinic: Implementation Study
por: Li, Jing, et al.
Publicado: (2018) -
Protected Health Information filter (Philter): accurately and securely de-identifying free-text clinical notes
por: Norgeot, Beau, et al.
Publicado: (2020) -
Demographic Characteristics of Participants in Rheumatoid Arthritis Randomized Clinical Trials: A Systematic Review
por: Strait, Adrienne, et al.
Publicado: (2019) -
Socioeconomic Disparities in Functional Status in a National Sample of Patients With Rheumatoid Arthritis
por: Izadi, Zara, et al.
Publicado: (2021)