Cargando…

Centromere histone H3- and phospholipase-mediated haploid induction in plants

Simple and consistent production of haploid is always an appealing pursuit for both crop breeders and researchers. Although diverse strategies have been developed to produce haploids over the past decades, most of them are applicable in only a limited number of plant species. In 2010, Ravi and Chan...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Song, Jin, Weiwei, Wang, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485145/
https://www.ncbi.nlm.nih.gov/pubmed/31057661
http://dx.doi.org/10.1186/s13007-019-0429-5
Descripción
Sumario:Simple and consistent production of haploid is always an appealing pursuit for both crop breeders and researchers. Although diverse strategies have been developed to produce haploids over the past decades, most of them are applicable in only a limited number of plant species. In 2010, Ravi and Chan reported that haploid Arabidopsis thaliana plants can be efficiently induced through the introduction of a single genetic alteration in centromere histone H3 (CENH3). Subsequent studies demonstrated that haploids can be efficiently induced either through genetic engineering of CENH3 N-terminal tail or histone fold domain or by replacing CENH3 with an ortholog. The mutation of a pollen-specific phospholipase gene, MATRILINEAL (MTL) has been revealed to trigger the haploid induction (HI) in maize, which present another promising HI approach by the editing of MTL in plant. Here, we review the progress of the CENH3-medialed HI and propose a revised centromere-size model by suggesting a competitive loading process between wild-type and mutant CENH3 during HI. This model can explain both the findings of HI failure when wild-type and mutant CENH3 genes are coexpressed and the alien centromere loading of CENH3 in stable hybrids. In addition, we review the current understanding of MTL-mediated HI in plant. The conservation of CENH3 and MTL in plants indicates wide potential application for HI. We discuss the utility and potential of these two methods in crops by comparing their mechanisms and applications to date in plants. This review will promote the study and application of both CENH3- and MTL-mediated haploid induction in plants. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13007-019-0429-5) contains supplementary material, which is available to authorized users.