Cargando…

Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution

The small mass and high coherence of nanomechanical resonators render them the ultimate mechanical probe, with applications ranging from protein mass spectrometry and magnetic resonance force microscopy, to quantum optomechanics. A notorious challenge in these experiments is thermomechanical noise r...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsaturyan, Y., Barg, A., Polzik, E. S., Schliesser, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485342/
https://www.ncbi.nlm.nih.gov/pubmed/28604707
http://dx.doi.org/10.1038/nnano.2017.101
_version_ 1783414261101363200
author Tsaturyan, Y.
Barg, A.
Polzik, E. S.
Schliesser, A.
author_facet Tsaturyan, Y.
Barg, A.
Polzik, E. S.
Schliesser, A.
author_sort Tsaturyan, Y.
collection PubMed
description The small mass and high coherence of nanomechanical resonators render them the ultimate mechanical probe, with applications ranging from protein mass spectrometry and magnetic resonance force microscopy, to quantum optomechanics. A notorious challenge in these experiments is thermomechanical noise related to dissipation through internal or external loss channels. Here, we introduce a novel approach to defining nanomechanical modes, which simultaneously provides strong spatial confinement, full isolation from the substrate, and dilution of the resonator material’s intrinsic dissipation by five orders of magnitude. It is based on a phononic bandgap structure that localises the mode, without imposing the boundary conditions of a rigid clamp. The reduced curvature in the highly tensioned silicon nitride resonator enables mechanical Q > 10(8) at 1 MHz, yielding the highest mechanical Qf-products (> 10(14) Hz) yet reported at room temperature. The corresponding coherence times approach those of optically trapped dielectric particles. Extrapolation to 4.2 Kelvin predicts ~quanta/ms heating rates, similar to trapped ions.
format Online
Article
Text
id pubmed-6485342
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-64853422019-04-26 Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution Tsaturyan, Y. Barg, A. Polzik, E. S. Schliesser, A. Nat Nanotechnol Article The small mass and high coherence of nanomechanical resonators render them the ultimate mechanical probe, with applications ranging from protein mass spectrometry and magnetic resonance force microscopy, to quantum optomechanics. A notorious challenge in these experiments is thermomechanical noise related to dissipation through internal or external loss channels. Here, we introduce a novel approach to defining nanomechanical modes, which simultaneously provides strong spatial confinement, full isolation from the substrate, and dilution of the resonator material’s intrinsic dissipation by five orders of magnitude. It is based on a phononic bandgap structure that localises the mode, without imposing the boundary conditions of a rigid clamp. The reduced curvature in the highly tensioned silicon nitride resonator enables mechanical Q > 10(8) at 1 MHz, yielding the highest mechanical Qf-products (> 10(14) Hz) yet reported at room temperature. The corresponding coherence times approach those of optically trapped dielectric particles. Extrapolation to 4.2 Kelvin predicts ~quanta/ms heating rates, similar to trapped ions. 2017-06-12 2017-08 /pmc/articles/PMC6485342/ /pubmed/28604707 http://dx.doi.org/10.1038/nnano.2017.101 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Tsaturyan, Y.
Barg, A.
Polzik, E. S.
Schliesser, A.
Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution
title Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution
title_full Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution
title_fullStr Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution
title_full_unstemmed Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution
title_short Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution
title_sort ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485342/
https://www.ncbi.nlm.nih.gov/pubmed/28604707
http://dx.doi.org/10.1038/nnano.2017.101
work_keys_str_mv AT tsaturyany ultracoherentnanomechanicalresonatorsviasoftclampinganddissipationdilution
AT barga ultracoherentnanomechanicalresonatorsviasoftclampinganddissipationdilution
AT polzikes ultracoherentnanomechanicalresonatorsviasoftclampinganddissipationdilution
AT schliessera ultracoherentnanomechanicalresonatorsviasoftclampinganddissipationdilution