Cargando…

Prediction of acute myeloid leukaemia risk in healthy individuals

The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without a detectable prodrome and present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the a...

Descripción completa

Detalles Bibliográficos
Autores principales: Abelson, Sagi, Collord, Grace, Ng, Stanley W.K., Weissbrod, Omer, Cohen, Netta Mendelson, Niemeyer, Elisabeth, Barda, Noam, Zuzarte, Philip C., Heisler, Lawrence, Sundaravadanam, Yogi, Luben, Robert, Hayat, Shabina, Wang, Ting Ting, Zhao, Zhen, Cirlan, Iulia, Pugh, Trevor J., Soave, David, Ng, Karen, Latimer, Calli, Hardy, Claire, Raine, Keiran, Jones, David, Hoult, Diana, Britten, Abigail, McPherson, John D., Johansson, Mattias, Mbabaali, Faridah, Eagles, Jenna, Miller, Jessica, Pasternack, Danielle, Timms, Lee, Krzyzanowski, Paul, Awadalla, Phillip, Costa, Rui, Segal, Eran, Bratman, Scott V., Beer, Philip, Behjati, Sam, Martincorena, Inigo, Wang, Jean C.Y., Bowles, Kristian M., Quirós, J Ramón, Karakatsani, Anna, La Vecchia, Carlo, Trichopoulou, Antonia, Salamanca-Fernández, Elena, Huerta, José M., Barricarte, Aurelio, Travis, Ruth C., Tumino, Rosario, Masala, Giovanna, Boeing, Heiner, Panico, Salvatore, Kaaks, Rudolf, Krämer, Alwin, Sieri, Sabina, Riboli, Elio, Vineis, Paolo, Foll, Matthieu, McKay, James, Polidoro, Silvia, Sala, Núria, Khaw, Kay-Tee, Vermeulen, Roel, Campbell, Peter J, Papaemmanuil, Elli, Minden, Mark D, Tanay, Amos, Balicer, Ran D, Wareham, Nicholas J, Gerstung, Moritz, Dick, John E., Brennan, Paul, Vassiliou, George S., Shlush, Liran I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485381/
https://www.ncbi.nlm.nih.gov/pubmed/29988082
http://dx.doi.org/10.1038/s41586-018-0317-6
_version_ 1783414262038790144
author Abelson, Sagi
Collord, Grace
Ng, Stanley W.K.
Weissbrod, Omer
Cohen, Netta Mendelson
Niemeyer, Elisabeth
Barda, Noam
Zuzarte, Philip C.
Heisler, Lawrence
Sundaravadanam, Yogi
Luben, Robert
Hayat, Shabina
Wang, Ting Ting
Zhao, Zhen
Cirlan, Iulia
Pugh, Trevor J.
Soave, David
Ng, Karen
Latimer, Calli
Hardy, Claire
Raine, Keiran
Jones, David
Hoult, Diana
Britten, Abigail
McPherson, John D.
Johansson, Mattias
Mbabaali, Faridah
Eagles, Jenna
Miller, Jessica
Pasternack, Danielle
Timms, Lee
Krzyzanowski, Paul
Awadalla, Phillip
Costa, Rui
Segal, Eran
Bratman, Scott V.
Beer, Philip
Behjati, Sam
Martincorena, Inigo
Wang, Jean C.Y.
Bowles, Kristian M.
Quirós, J Ramón
Karakatsani, Anna
La Vecchia, Carlo
Trichopoulou, Antonia
Salamanca-Fernández, Elena
Huerta, José M.
Barricarte, Aurelio
Travis, Ruth C.
Tumino, Rosario
Masala, Giovanna
Boeing, Heiner
Panico, Salvatore
Kaaks, Rudolf
Krämer, Alwin
Sieri, Sabina
Riboli, Elio
Vineis, Paolo
Foll, Matthieu
McKay, James
Polidoro, Silvia
Sala, Núria
Khaw, Kay-Tee
Vermeulen, Roel
Campbell, Peter J
Papaemmanuil, Elli
Minden, Mark D
Tanay, Amos
Balicer, Ran D
Wareham, Nicholas J
Gerstung, Moritz
Dick, John E.
Brennan, Paul
Vassiliou, George S.
Shlush, Liran I.
author_facet Abelson, Sagi
Collord, Grace
Ng, Stanley W.K.
Weissbrod, Omer
Cohen, Netta Mendelson
Niemeyer, Elisabeth
Barda, Noam
Zuzarte, Philip C.
Heisler, Lawrence
Sundaravadanam, Yogi
Luben, Robert
Hayat, Shabina
Wang, Ting Ting
Zhao, Zhen
Cirlan, Iulia
Pugh, Trevor J.
Soave, David
Ng, Karen
Latimer, Calli
Hardy, Claire
Raine, Keiran
Jones, David
Hoult, Diana
Britten, Abigail
McPherson, John D.
Johansson, Mattias
Mbabaali, Faridah
Eagles, Jenna
Miller, Jessica
Pasternack, Danielle
Timms, Lee
Krzyzanowski, Paul
Awadalla, Phillip
Costa, Rui
Segal, Eran
Bratman, Scott V.
Beer, Philip
Behjati, Sam
Martincorena, Inigo
Wang, Jean C.Y.
Bowles, Kristian M.
Quirós, J Ramón
Karakatsani, Anna
La Vecchia, Carlo
Trichopoulou, Antonia
Salamanca-Fernández, Elena
Huerta, José M.
Barricarte, Aurelio
Travis, Ruth C.
Tumino, Rosario
Masala, Giovanna
Boeing, Heiner
Panico, Salvatore
Kaaks, Rudolf
Krämer, Alwin
Sieri, Sabina
Riboli, Elio
Vineis, Paolo
Foll, Matthieu
McKay, James
Polidoro, Silvia
Sala, Núria
Khaw, Kay-Tee
Vermeulen, Roel
Campbell, Peter J
Papaemmanuil, Elli
Minden, Mark D
Tanay, Amos
Balicer, Ran D
Wareham, Nicholas J
Gerstung, Moritz
Dick, John E.
Brennan, Paul
Vassiliou, George S.
Shlush, Liran I.
author_sort Abelson, Sagi
collection PubMed
description The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without a detectable prodrome and present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in pre-leukaemic haematopoietic stem and progenitor cells (HSPC) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH),4–8. To distinguish individuals at high risk of developing AML from those with benign ARCH, we undertook deep sequencing of genes recurrently mutated in AML in the peripheral blood cells of 95 individuals sampled on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls with more mutations per sample, higher variant allele frequencies (VAF) reflective of greater clonal expansion, and enrichment for mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AMLs and 262 controls. Since AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide a proof-of-concept that it is possible to discriminate ARCH from pre-AML many years prior to malignant transformation. This could in the future enable earlier detection, monitoring and potentially inform intervention.
format Online
Article
Text
id pubmed-6485381
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-64853812019-04-26 Prediction of acute myeloid leukaemia risk in healthy individuals Abelson, Sagi Collord, Grace Ng, Stanley W.K. Weissbrod, Omer Cohen, Netta Mendelson Niemeyer, Elisabeth Barda, Noam Zuzarte, Philip C. Heisler, Lawrence Sundaravadanam, Yogi Luben, Robert Hayat, Shabina Wang, Ting Ting Zhao, Zhen Cirlan, Iulia Pugh, Trevor J. Soave, David Ng, Karen Latimer, Calli Hardy, Claire Raine, Keiran Jones, David Hoult, Diana Britten, Abigail McPherson, John D. Johansson, Mattias Mbabaali, Faridah Eagles, Jenna Miller, Jessica Pasternack, Danielle Timms, Lee Krzyzanowski, Paul Awadalla, Phillip Costa, Rui Segal, Eran Bratman, Scott V. Beer, Philip Behjati, Sam Martincorena, Inigo Wang, Jean C.Y. Bowles, Kristian M. Quirós, J Ramón Karakatsani, Anna La Vecchia, Carlo Trichopoulou, Antonia Salamanca-Fernández, Elena Huerta, José M. Barricarte, Aurelio Travis, Ruth C. Tumino, Rosario Masala, Giovanna Boeing, Heiner Panico, Salvatore Kaaks, Rudolf Krämer, Alwin Sieri, Sabina Riboli, Elio Vineis, Paolo Foll, Matthieu McKay, James Polidoro, Silvia Sala, Núria Khaw, Kay-Tee Vermeulen, Roel Campbell, Peter J Papaemmanuil, Elli Minden, Mark D Tanay, Amos Balicer, Ran D Wareham, Nicholas J Gerstung, Moritz Dick, John E. Brennan, Paul Vassiliou, George S. Shlush, Liran I. Nature Article The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without a detectable prodrome and present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in pre-leukaemic haematopoietic stem and progenitor cells (HSPC) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH),4–8. To distinguish individuals at high risk of developing AML from those with benign ARCH, we undertook deep sequencing of genes recurrently mutated in AML in the peripheral blood cells of 95 individuals sampled on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls with more mutations per sample, higher variant allele frequencies (VAF) reflective of greater clonal expansion, and enrichment for mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AMLs and 262 controls. Since AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide a proof-of-concept that it is possible to discriminate ARCH from pre-AML many years prior to malignant transformation. This could in the future enable earlier detection, monitoring and potentially inform intervention. 2018-07-09 2018-07 /pmc/articles/PMC6485381/ /pubmed/29988082 http://dx.doi.org/10.1038/s41586-018-0317-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Abelson, Sagi
Collord, Grace
Ng, Stanley W.K.
Weissbrod, Omer
Cohen, Netta Mendelson
Niemeyer, Elisabeth
Barda, Noam
Zuzarte, Philip C.
Heisler, Lawrence
Sundaravadanam, Yogi
Luben, Robert
Hayat, Shabina
Wang, Ting Ting
Zhao, Zhen
Cirlan, Iulia
Pugh, Trevor J.
Soave, David
Ng, Karen
Latimer, Calli
Hardy, Claire
Raine, Keiran
Jones, David
Hoult, Diana
Britten, Abigail
McPherson, John D.
Johansson, Mattias
Mbabaali, Faridah
Eagles, Jenna
Miller, Jessica
Pasternack, Danielle
Timms, Lee
Krzyzanowski, Paul
Awadalla, Phillip
Costa, Rui
Segal, Eran
Bratman, Scott V.
Beer, Philip
Behjati, Sam
Martincorena, Inigo
Wang, Jean C.Y.
Bowles, Kristian M.
Quirós, J Ramón
Karakatsani, Anna
La Vecchia, Carlo
Trichopoulou, Antonia
Salamanca-Fernández, Elena
Huerta, José M.
Barricarte, Aurelio
Travis, Ruth C.
Tumino, Rosario
Masala, Giovanna
Boeing, Heiner
Panico, Salvatore
Kaaks, Rudolf
Krämer, Alwin
Sieri, Sabina
Riboli, Elio
Vineis, Paolo
Foll, Matthieu
McKay, James
Polidoro, Silvia
Sala, Núria
Khaw, Kay-Tee
Vermeulen, Roel
Campbell, Peter J
Papaemmanuil, Elli
Minden, Mark D
Tanay, Amos
Balicer, Ran D
Wareham, Nicholas J
Gerstung, Moritz
Dick, John E.
Brennan, Paul
Vassiliou, George S.
Shlush, Liran I.
Prediction of acute myeloid leukaemia risk in healthy individuals
title Prediction of acute myeloid leukaemia risk in healthy individuals
title_full Prediction of acute myeloid leukaemia risk in healthy individuals
title_fullStr Prediction of acute myeloid leukaemia risk in healthy individuals
title_full_unstemmed Prediction of acute myeloid leukaemia risk in healthy individuals
title_short Prediction of acute myeloid leukaemia risk in healthy individuals
title_sort prediction of acute myeloid leukaemia risk in healthy individuals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485381/
https://www.ncbi.nlm.nih.gov/pubmed/29988082
http://dx.doi.org/10.1038/s41586-018-0317-6
work_keys_str_mv AT abelsonsagi predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT collordgrace predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT ngstanleywk predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT weissbrodomer predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT cohennettamendelson predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT niemeyerelisabeth predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT bardanoam predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT zuzartephilipc predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT heislerlawrence predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT sundaravadanamyogi predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT lubenrobert predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT hayatshabina predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT wangtingting predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT zhaozhen predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT cirlaniulia predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT pughtrevorj predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT soavedavid predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT ngkaren predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT latimercalli predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT hardyclaire predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT rainekeiran predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT jonesdavid predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT houltdiana predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT brittenabigail predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT mcphersonjohnd predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT johanssonmattias predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT mbabaalifaridah predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT eaglesjenna predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT millerjessica predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT pasternackdanielle predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT timmslee predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT krzyzanowskipaul predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT awadallaphillip predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT costarui predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT segaleran predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT bratmanscottv predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT beerphilip predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT behjatisam predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT martincorenainigo predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT wangjeancy predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT bowleskristianm predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT quirosjramon predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT karakatsanianna predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT lavecchiacarlo predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT trichopoulouantonia predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT salamancafernandezelena predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT huertajosem predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT barricarteaurelio predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT travisruthc predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT tuminorosario predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT masalagiovanna predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT boeingheiner predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT panicosalvatore predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT kaaksrudolf predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT krameralwin predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT sierisabina predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT ribolielio predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT vineispaolo predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT follmatthieu predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT mckayjames predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT polidorosilvia predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT salanuria predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT khawkaytee predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT vermeulenroel predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT campbellpeterj predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT papaemmanuilelli predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT mindenmarkd predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT tanayamos predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT balicerrand predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT warehamnicholasj predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT gerstungmoritz predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT dickjohne predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT brennanpaul predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT vassiliougeorges predictionofacutemyeloidleukaemiariskinhealthyindividuals
AT shlushlirani predictionofacutemyeloidleukaemiariskinhealthyindividuals