Cargando…
Prediction of acute myeloid leukaemia risk in healthy individuals
The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without a detectable prodrome and present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the a...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485381/ https://www.ncbi.nlm.nih.gov/pubmed/29988082 http://dx.doi.org/10.1038/s41586-018-0317-6 |
_version_ | 1783414262038790144 |
---|---|
author | Abelson, Sagi Collord, Grace Ng, Stanley W.K. Weissbrod, Omer Cohen, Netta Mendelson Niemeyer, Elisabeth Barda, Noam Zuzarte, Philip C. Heisler, Lawrence Sundaravadanam, Yogi Luben, Robert Hayat, Shabina Wang, Ting Ting Zhao, Zhen Cirlan, Iulia Pugh, Trevor J. Soave, David Ng, Karen Latimer, Calli Hardy, Claire Raine, Keiran Jones, David Hoult, Diana Britten, Abigail McPherson, John D. Johansson, Mattias Mbabaali, Faridah Eagles, Jenna Miller, Jessica Pasternack, Danielle Timms, Lee Krzyzanowski, Paul Awadalla, Phillip Costa, Rui Segal, Eran Bratman, Scott V. Beer, Philip Behjati, Sam Martincorena, Inigo Wang, Jean C.Y. Bowles, Kristian M. Quirós, J Ramón Karakatsani, Anna La Vecchia, Carlo Trichopoulou, Antonia Salamanca-Fernández, Elena Huerta, José M. Barricarte, Aurelio Travis, Ruth C. Tumino, Rosario Masala, Giovanna Boeing, Heiner Panico, Salvatore Kaaks, Rudolf Krämer, Alwin Sieri, Sabina Riboli, Elio Vineis, Paolo Foll, Matthieu McKay, James Polidoro, Silvia Sala, Núria Khaw, Kay-Tee Vermeulen, Roel Campbell, Peter J Papaemmanuil, Elli Minden, Mark D Tanay, Amos Balicer, Ran D Wareham, Nicholas J Gerstung, Moritz Dick, John E. Brennan, Paul Vassiliou, George S. Shlush, Liran I. |
author_facet | Abelson, Sagi Collord, Grace Ng, Stanley W.K. Weissbrod, Omer Cohen, Netta Mendelson Niemeyer, Elisabeth Barda, Noam Zuzarte, Philip C. Heisler, Lawrence Sundaravadanam, Yogi Luben, Robert Hayat, Shabina Wang, Ting Ting Zhao, Zhen Cirlan, Iulia Pugh, Trevor J. Soave, David Ng, Karen Latimer, Calli Hardy, Claire Raine, Keiran Jones, David Hoult, Diana Britten, Abigail McPherson, John D. Johansson, Mattias Mbabaali, Faridah Eagles, Jenna Miller, Jessica Pasternack, Danielle Timms, Lee Krzyzanowski, Paul Awadalla, Phillip Costa, Rui Segal, Eran Bratman, Scott V. Beer, Philip Behjati, Sam Martincorena, Inigo Wang, Jean C.Y. Bowles, Kristian M. Quirós, J Ramón Karakatsani, Anna La Vecchia, Carlo Trichopoulou, Antonia Salamanca-Fernández, Elena Huerta, José M. Barricarte, Aurelio Travis, Ruth C. Tumino, Rosario Masala, Giovanna Boeing, Heiner Panico, Salvatore Kaaks, Rudolf Krämer, Alwin Sieri, Sabina Riboli, Elio Vineis, Paolo Foll, Matthieu McKay, James Polidoro, Silvia Sala, Núria Khaw, Kay-Tee Vermeulen, Roel Campbell, Peter J Papaemmanuil, Elli Minden, Mark D Tanay, Amos Balicer, Ran D Wareham, Nicholas J Gerstung, Moritz Dick, John E. Brennan, Paul Vassiliou, George S. Shlush, Liran I. |
author_sort | Abelson, Sagi |
collection | PubMed |
description | The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without a detectable prodrome and present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in pre-leukaemic haematopoietic stem and progenitor cells (HSPC) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH),4–8. To distinguish individuals at high risk of developing AML from those with benign ARCH, we undertook deep sequencing of genes recurrently mutated in AML in the peripheral blood cells of 95 individuals sampled on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls with more mutations per sample, higher variant allele frequencies (VAF) reflective of greater clonal expansion, and enrichment for mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AMLs and 262 controls. Since AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide a proof-of-concept that it is possible to discriminate ARCH from pre-AML many years prior to malignant transformation. This could in the future enable earlier detection, monitoring and potentially inform intervention. |
format | Online Article Text |
id | pubmed-6485381 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-64853812019-04-26 Prediction of acute myeloid leukaemia risk in healthy individuals Abelson, Sagi Collord, Grace Ng, Stanley W.K. Weissbrod, Omer Cohen, Netta Mendelson Niemeyer, Elisabeth Barda, Noam Zuzarte, Philip C. Heisler, Lawrence Sundaravadanam, Yogi Luben, Robert Hayat, Shabina Wang, Ting Ting Zhao, Zhen Cirlan, Iulia Pugh, Trevor J. Soave, David Ng, Karen Latimer, Calli Hardy, Claire Raine, Keiran Jones, David Hoult, Diana Britten, Abigail McPherson, John D. Johansson, Mattias Mbabaali, Faridah Eagles, Jenna Miller, Jessica Pasternack, Danielle Timms, Lee Krzyzanowski, Paul Awadalla, Phillip Costa, Rui Segal, Eran Bratman, Scott V. Beer, Philip Behjati, Sam Martincorena, Inigo Wang, Jean C.Y. Bowles, Kristian M. Quirós, J Ramón Karakatsani, Anna La Vecchia, Carlo Trichopoulou, Antonia Salamanca-Fernández, Elena Huerta, José M. Barricarte, Aurelio Travis, Ruth C. Tumino, Rosario Masala, Giovanna Boeing, Heiner Panico, Salvatore Kaaks, Rudolf Krämer, Alwin Sieri, Sabina Riboli, Elio Vineis, Paolo Foll, Matthieu McKay, James Polidoro, Silvia Sala, Núria Khaw, Kay-Tee Vermeulen, Roel Campbell, Peter J Papaemmanuil, Elli Minden, Mark D Tanay, Amos Balicer, Ran D Wareham, Nicholas J Gerstung, Moritz Dick, John E. Brennan, Paul Vassiliou, George S. Shlush, Liran I. Nature Article The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without a detectable prodrome and present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in pre-leukaemic haematopoietic stem and progenitor cells (HSPC) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH),4–8. To distinguish individuals at high risk of developing AML from those with benign ARCH, we undertook deep sequencing of genes recurrently mutated in AML in the peripheral blood cells of 95 individuals sampled on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls with more mutations per sample, higher variant allele frequencies (VAF) reflective of greater clonal expansion, and enrichment for mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AMLs and 262 controls. Since AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide a proof-of-concept that it is possible to discriminate ARCH from pre-AML many years prior to malignant transformation. This could in the future enable earlier detection, monitoring and potentially inform intervention. 2018-07-09 2018-07 /pmc/articles/PMC6485381/ /pubmed/29988082 http://dx.doi.org/10.1038/s41586-018-0317-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Abelson, Sagi Collord, Grace Ng, Stanley W.K. Weissbrod, Omer Cohen, Netta Mendelson Niemeyer, Elisabeth Barda, Noam Zuzarte, Philip C. Heisler, Lawrence Sundaravadanam, Yogi Luben, Robert Hayat, Shabina Wang, Ting Ting Zhao, Zhen Cirlan, Iulia Pugh, Trevor J. Soave, David Ng, Karen Latimer, Calli Hardy, Claire Raine, Keiran Jones, David Hoult, Diana Britten, Abigail McPherson, John D. Johansson, Mattias Mbabaali, Faridah Eagles, Jenna Miller, Jessica Pasternack, Danielle Timms, Lee Krzyzanowski, Paul Awadalla, Phillip Costa, Rui Segal, Eran Bratman, Scott V. Beer, Philip Behjati, Sam Martincorena, Inigo Wang, Jean C.Y. Bowles, Kristian M. Quirós, J Ramón Karakatsani, Anna La Vecchia, Carlo Trichopoulou, Antonia Salamanca-Fernández, Elena Huerta, José M. Barricarte, Aurelio Travis, Ruth C. Tumino, Rosario Masala, Giovanna Boeing, Heiner Panico, Salvatore Kaaks, Rudolf Krämer, Alwin Sieri, Sabina Riboli, Elio Vineis, Paolo Foll, Matthieu McKay, James Polidoro, Silvia Sala, Núria Khaw, Kay-Tee Vermeulen, Roel Campbell, Peter J Papaemmanuil, Elli Minden, Mark D Tanay, Amos Balicer, Ran D Wareham, Nicholas J Gerstung, Moritz Dick, John E. Brennan, Paul Vassiliou, George S. Shlush, Liran I. Prediction of acute myeloid leukaemia risk in healthy individuals |
title | Prediction of acute myeloid leukaemia risk in healthy individuals |
title_full | Prediction of acute myeloid leukaemia risk in healthy individuals |
title_fullStr | Prediction of acute myeloid leukaemia risk in healthy individuals |
title_full_unstemmed | Prediction of acute myeloid leukaemia risk in healthy individuals |
title_short | Prediction of acute myeloid leukaemia risk in healthy individuals |
title_sort | prediction of acute myeloid leukaemia risk in healthy individuals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485381/ https://www.ncbi.nlm.nih.gov/pubmed/29988082 http://dx.doi.org/10.1038/s41586-018-0317-6 |
work_keys_str_mv | AT abelsonsagi predictionofacutemyeloidleukaemiariskinhealthyindividuals AT collordgrace predictionofacutemyeloidleukaemiariskinhealthyindividuals AT ngstanleywk predictionofacutemyeloidleukaemiariskinhealthyindividuals AT weissbrodomer predictionofacutemyeloidleukaemiariskinhealthyindividuals AT cohennettamendelson predictionofacutemyeloidleukaemiariskinhealthyindividuals AT niemeyerelisabeth predictionofacutemyeloidleukaemiariskinhealthyindividuals AT bardanoam predictionofacutemyeloidleukaemiariskinhealthyindividuals AT zuzartephilipc predictionofacutemyeloidleukaemiariskinhealthyindividuals AT heislerlawrence predictionofacutemyeloidleukaemiariskinhealthyindividuals AT sundaravadanamyogi predictionofacutemyeloidleukaemiariskinhealthyindividuals AT lubenrobert predictionofacutemyeloidleukaemiariskinhealthyindividuals AT hayatshabina predictionofacutemyeloidleukaemiariskinhealthyindividuals AT wangtingting predictionofacutemyeloidleukaemiariskinhealthyindividuals AT zhaozhen predictionofacutemyeloidleukaemiariskinhealthyindividuals AT cirlaniulia predictionofacutemyeloidleukaemiariskinhealthyindividuals AT pughtrevorj predictionofacutemyeloidleukaemiariskinhealthyindividuals AT soavedavid predictionofacutemyeloidleukaemiariskinhealthyindividuals AT ngkaren predictionofacutemyeloidleukaemiariskinhealthyindividuals AT latimercalli predictionofacutemyeloidleukaemiariskinhealthyindividuals AT hardyclaire predictionofacutemyeloidleukaemiariskinhealthyindividuals AT rainekeiran predictionofacutemyeloidleukaemiariskinhealthyindividuals AT jonesdavid predictionofacutemyeloidleukaemiariskinhealthyindividuals AT houltdiana predictionofacutemyeloidleukaemiariskinhealthyindividuals AT brittenabigail predictionofacutemyeloidleukaemiariskinhealthyindividuals AT mcphersonjohnd predictionofacutemyeloidleukaemiariskinhealthyindividuals AT johanssonmattias predictionofacutemyeloidleukaemiariskinhealthyindividuals AT mbabaalifaridah predictionofacutemyeloidleukaemiariskinhealthyindividuals AT eaglesjenna predictionofacutemyeloidleukaemiariskinhealthyindividuals AT millerjessica predictionofacutemyeloidleukaemiariskinhealthyindividuals AT pasternackdanielle predictionofacutemyeloidleukaemiariskinhealthyindividuals AT timmslee predictionofacutemyeloidleukaemiariskinhealthyindividuals AT krzyzanowskipaul predictionofacutemyeloidleukaemiariskinhealthyindividuals AT awadallaphillip predictionofacutemyeloidleukaemiariskinhealthyindividuals AT costarui predictionofacutemyeloidleukaemiariskinhealthyindividuals AT segaleran predictionofacutemyeloidleukaemiariskinhealthyindividuals AT bratmanscottv predictionofacutemyeloidleukaemiariskinhealthyindividuals AT beerphilip predictionofacutemyeloidleukaemiariskinhealthyindividuals AT behjatisam predictionofacutemyeloidleukaemiariskinhealthyindividuals AT martincorenainigo predictionofacutemyeloidleukaemiariskinhealthyindividuals AT wangjeancy predictionofacutemyeloidleukaemiariskinhealthyindividuals AT bowleskristianm predictionofacutemyeloidleukaemiariskinhealthyindividuals AT quirosjramon predictionofacutemyeloidleukaemiariskinhealthyindividuals AT karakatsanianna predictionofacutemyeloidleukaemiariskinhealthyindividuals AT lavecchiacarlo predictionofacutemyeloidleukaemiariskinhealthyindividuals AT trichopoulouantonia predictionofacutemyeloidleukaemiariskinhealthyindividuals AT salamancafernandezelena predictionofacutemyeloidleukaemiariskinhealthyindividuals AT huertajosem predictionofacutemyeloidleukaemiariskinhealthyindividuals AT barricarteaurelio predictionofacutemyeloidleukaemiariskinhealthyindividuals AT travisruthc predictionofacutemyeloidleukaemiariskinhealthyindividuals AT tuminorosario predictionofacutemyeloidleukaemiariskinhealthyindividuals AT masalagiovanna predictionofacutemyeloidleukaemiariskinhealthyindividuals AT boeingheiner predictionofacutemyeloidleukaemiariskinhealthyindividuals AT panicosalvatore predictionofacutemyeloidleukaemiariskinhealthyindividuals AT kaaksrudolf predictionofacutemyeloidleukaemiariskinhealthyindividuals AT krameralwin predictionofacutemyeloidleukaemiariskinhealthyindividuals AT sierisabina predictionofacutemyeloidleukaemiariskinhealthyindividuals AT ribolielio predictionofacutemyeloidleukaemiariskinhealthyindividuals AT vineispaolo predictionofacutemyeloidleukaemiariskinhealthyindividuals AT follmatthieu predictionofacutemyeloidleukaemiariskinhealthyindividuals AT mckayjames predictionofacutemyeloidleukaemiariskinhealthyindividuals AT polidorosilvia predictionofacutemyeloidleukaemiariskinhealthyindividuals AT salanuria predictionofacutemyeloidleukaemiariskinhealthyindividuals AT khawkaytee predictionofacutemyeloidleukaemiariskinhealthyindividuals AT vermeulenroel predictionofacutemyeloidleukaemiariskinhealthyindividuals AT campbellpeterj predictionofacutemyeloidleukaemiariskinhealthyindividuals AT papaemmanuilelli predictionofacutemyeloidleukaemiariskinhealthyindividuals AT mindenmarkd predictionofacutemyeloidleukaemiariskinhealthyindividuals AT tanayamos predictionofacutemyeloidleukaemiariskinhealthyindividuals AT balicerrand predictionofacutemyeloidleukaemiariskinhealthyindividuals AT warehamnicholasj predictionofacutemyeloidleukaemiariskinhealthyindividuals AT gerstungmoritz predictionofacutemyeloidleukaemiariskinhealthyindividuals AT dickjohne predictionofacutemyeloidleukaemiariskinhealthyindividuals AT brennanpaul predictionofacutemyeloidleukaemiariskinhealthyindividuals AT vassiliougeorges predictionofacutemyeloidleukaemiariskinhealthyindividuals AT shlushlirani predictionofacutemyeloidleukaemiariskinhealthyindividuals |