Cargando…

Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide

Spintronics uses spins, the intrinsic angular momentum of electrons, as an alternative for the electron charge. Its long-term goal is to develop beyond-Moore, low-dissipation technology devices, recently demonstrating long-distance transport of spin signals across ferromagnetic insulators1. Antiferr...

Descripción completa

Detalles Bibliográficos
Autores principales: Lebrun, R., Ross, A., Bender, S. A., Qaiumzadeh, A., Baldrati, L., Cramer, J., Brataas, A., Duine, R. A., Kläui, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485392/
https://www.ncbi.nlm.nih.gov/pubmed/30209370
http://dx.doi.org/10.1038/s41586-018-0490-7
_version_ 1783414262487580672
author Lebrun, R.
Ross, A.
Bender, S. A.
Qaiumzadeh, A.
Baldrati, L.
Cramer, J.
Brataas, A.
Duine, R. A.
Kläui, M.
author_facet Lebrun, R.
Ross, A.
Bender, S. A.
Qaiumzadeh, A.
Baldrati, L.
Cramer, J.
Brataas, A.
Duine, R. A.
Kläui, M.
author_sort Lebrun, R.
collection PubMed
description Spintronics uses spins, the intrinsic angular momentum of electrons, as an alternative for the electron charge. Its long-term goal is to develop beyond-Moore, low-dissipation technology devices, recently demonstrating long-distance transport of spin signals across ferromagnetic insulators1. Antiferromagnetically ordered materials, the most common class of magnetic materials, have several crucial advantages over ferromagnetic systems2. Antiferromagnets exhibit no net magnetic moment, rendering them stable and impervious to external fields. Additionally, they can be operated at THz frequencies3. Although their properties bode well for spin transport4–7, previous indirect observations indicate that spin transmission through antiferromagnets is limited to only a few nanometers8–10. Here we demonstrate the long-distance propagation of spin-currents through single-crystalline hematite (α-Fe(2)O(3))11, the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection. We control the spin-current flow by the interfacial spin-bias, tuning the antiferromagnetic resonance frequency with an external magnetic field12. This simple antiferromagnetic insulator conveys spin information parallel to the Néel order over distances exceeding tens of micrometers. This newly-discovered mechanism transports spin as efficiently as the net magnetic moments in the best-suited complex ferromagnets1. Our results pave the way to ultra-fast, low-power antiferromagnet-insulator-based spin-logic devices6,13 that operate, without magnetic fields, at room temperature.
format Online
Article
Text
id pubmed-6485392
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-64853922019-04-26 Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide Lebrun, R. Ross, A. Bender, S. A. Qaiumzadeh, A. Baldrati, L. Cramer, J. Brataas, A. Duine, R. A. Kläui, M. Nature Article Spintronics uses spins, the intrinsic angular momentum of electrons, as an alternative for the electron charge. Its long-term goal is to develop beyond-Moore, low-dissipation technology devices, recently demonstrating long-distance transport of spin signals across ferromagnetic insulators1. Antiferromagnetically ordered materials, the most common class of magnetic materials, have several crucial advantages over ferromagnetic systems2. Antiferromagnets exhibit no net magnetic moment, rendering them stable and impervious to external fields. Additionally, they can be operated at THz frequencies3. Although their properties bode well for spin transport4–7, previous indirect observations indicate that spin transmission through antiferromagnets is limited to only a few nanometers8–10. Here we demonstrate the long-distance propagation of spin-currents through single-crystalline hematite (α-Fe(2)O(3))11, the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection. We control the spin-current flow by the interfacial spin-bias, tuning the antiferromagnetic resonance frequency with an external magnetic field12. This simple antiferromagnetic insulator conveys spin information parallel to the Néel order over distances exceeding tens of micrometers. This newly-discovered mechanism transports spin as efficiently as the net magnetic moments in the best-suited complex ferromagnets1. Our results pave the way to ultra-fast, low-power antiferromagnet-insulator-based spin-logic devices6,13 that operate, without magnetic fields, at room temperature. 2018-09-12 2018-09 /pmc/articles/PMC6485392/ /pubmed/30209370 http://dx.doi.org/10.1038/s41586-018-0490-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Lebrun, R.
Ross, A.
Bender, S. A.
Qaiumzadeh, A.
Baldrati, L.
Cramer, J.
Brataas, A.
Duine, R. A.
Kläui, M.
Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide
title Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide
title_full Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide
title_fullStr Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide
title_full_unstemmed Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide
title_short Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide
title_sort electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485392/
https://www.ncbi.nlm.nih.gov/pubmed/30209370
http://dx.doi.org/10.1038/s41586-018-0490-7
work_keys_str_mv AT lebrunr electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide
AT rossa electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide
AT bendersa electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide
AT qaiumzadeha electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide
AT baldratil electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide
AT cramerj electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide
AT brataasa electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide
AT duinera electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide
AT klauim electricallytunablelongdistancetransportincrystallineantiferromagneticironoxide