Cargando…
Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies
Pancreatic ductal adenocarcinoma (PDAC) exhibits a variety of phenotypes with regard to disease progression and treatment response. This variability complicates clinical decision-making despite the improvement of survival due to the recent introduction of FOLFIRINOX (FFX) and nab-paclitaxel. Questio...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485645/ https://www.ncbi.nlm.nih.gov/pubmed/31026288 http://dx.doi.org/10.1371/journal.pone.0215409 |
_version_ | 1783414287548547072 |
---|---|
author | Yamamoto, Kimiyo N. Nakamura, Akira Liu, Lin L. Stein, Shayna Tramontano, Angela C. Kartoun, Uri Shimizu, Tetsunosuke Inoue, Yoshihiro Asakuma, Mitsuhiro Haeno, Hiroshi Kong, Chung Yin Uchiyama, Kazuhisa Gonen, Mithat Hur, Chin Michor, Franziska |
author_facet | Yamamoto, Kimiyo N. Nakamura, Akira Liu, Lin L. Stein, Shayna Tramontano, Angela C. Kartoun, Uri Shimizu, Tetsunosuke Inoue, Yoshihiro Asakuma, Mitsuhiro Haeno, Hiroshi Kong, Chung Yin Uchiyama, Kazuhisa Gonen, Mithat Hur, Chin Michor, Franziska |
author_sort | Yamamoto, Kimiyo N. |
collection | PubMed |
description | Pancreatic ductal adenocarcinoma (PDAC) exhibits a variety of phenotypes with regard to disease progression and treatment response. This variability complicates clinical decision-making despite the improvement of survival due to the recent introduction of FOLFIRINOX (FFX) and nab-paclitaxel. Questions remain as to the timing and sequence of therapies and the role of radiotherapy for unresectable PDAC. Here we developed a computational analysis platform to investigate the dynamics of growth, metastasis and treatment response to FFX, gemcitabine (GEM), and GEM+nab-paclitaxel. Our approach was informed using data of 1,089 patients treated at the Massachusetts General Hospital and validated using an independent cohort from Osaka Medical College. Our framework establishes a logistic growth pattern of PDAC and defines the Local Advancement Index (LAI), which determines the eventual primary tumor size and predicts the number of metastases. We found that a smaller LAI leads to a larger metastatic burden. Furthermore, our analyses ascertain that i) radiotherapy after induction chemotherapy improves survival in cases receiving induction FFX or with larger LAI, ii) neoadjuvant chemotherapy improves survival in cases with resectable PDAC, and iii) temporary cessations of chemotherapies do not impact overall survival, which supports the feasibility of treatment holidays for patients with FFX-associated adverse effects. Our findings inform clinical decision-making for PDAC patients and allow for the rational design of clinical strategies using FFX, GEM, GEM+nab-paclitaxel, neoadjuvant chemotherapy, and radiation. |
format | Online Article Text |
id | pubmed-6485645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-64856452019-05-09 Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies Yamamoto, Kimiyo N. Nakamura, Akira Liu, Lin L. Stein, Shayna Tramontano, Angela C. Kartoun, Uri Shimizu, Tetsunosuke Inoue, Yoshihiro Asakuma, Mitsuhiro Haeno, Hiroshi Kong, Chung Yin Uchiyama, Kazuhisa Gonen, Mithat Hur, Chin Michor, Franziska PLoS One Research Article Pancreatic ductal adenocarcinoma (PDAC) exhibits a variety of phenotypes with regard to disease progression and treatment response. This variability complicates clinical decision-making despite the improvement of survival due to the recent introduction of FOLFIRINOX (FFX) and nab-paclitaxel. Questions remain as to the timing and sequence of therapies and the role of radiotherapy for unresectable PDAC. Here we developed a computational analysis platform to investigate the dynamics of growth, metastasis and treatment response to FFX, gemcitabine (GEM), and GEM+nab-paclitaxel. Our approach was informed using data of 1,089 patients treated at the Massachusetts General Hospital and validated using an independent cohort from Osaka Medical College. Our framework establishes a logistic growth pattern of PDAC and defines the Local Advancement Index (LAI), which determines the eventual primary tumor size and predicts the number of metastases. We found that a smaller LAI leads to a larger metastatic burden. Furthermore, our analyses ascertain that i) radiotherapy after induction chemotherapy improves survival in cases receiving induction FFX or with larger LAI, ii) neoadjuvant chemotherapy improves survival in cases with resectable PDAC, and iii) temporary cessations of chemotherapies do not impact overall survival, which supports the feasibility of treatment holidays for patients with FFX-associated adverse effects. Our findings inform clinical decision-making for PDAC patients and allow for the rational design of clinical strategies using FFX, GEM, GEM+nab-paclitaxel, neoadjuvant chemotherapy, and radiation. Public Library of Science 2019-04-26 /pmc/articles/PMC6485645/ /pubmed/31026288 http://dx.doi.org/10.1371/journal.pone.0215409 Text en © 2019 Yamamoto et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yamamoto, Kimiyo N. Nakamura, Akira Liu, Lin L. Stein, Shayna Tramontano, Angela C. Kartoun, Uri Shimizu, Tetsunosuke Inoue, Yoshihiro Asakuma, Mitsuhiro Haeno, Hiroshi Kong, Chung Yin Uchiyama, Kazuhisa Gonen, Mithat Hur, Chin Michor, Franziska Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies |
title | Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies |
title_full | Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies |
title_fullStr | Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies |
title_full_unstemmed | Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies |
title_short | Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies |
title_sort | computational modeling of pancreatic cancer patients receiving folfirinox and gemcitabine-based therapies identifies optimum intervention strategies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485645/ https://www.ncbi.nlm.nih.gov/pubmed/31026288 http://dx.doi.org/10.1371/journal.pone.0215409 |
work_keys_str_mv | AT yamamotokimiyon computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT nakamuraakira computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT liulinl computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT steinshayna computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT tramontanoangelac computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT kartounuri computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT shimizutetsunosuke computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT inoueyoshihiro computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT asakumamitsuhiro computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT haenohiroshi computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT kongchungyin computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT uchiyamakazuhisa computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT gonenmithat computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT hurchin computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies AT michorfranziska computationalmodelingofpancreaticcancerpatientsreceivingfolfirinoxandgemcitabinebasedtherapiesidentifiesoptimuminterventionstrategies |