Cargando…
Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network
RNA-binding proteins (RBPs) are important in gene expression regulations by post-transcriptional control of RNAs and immune system development and its function. Due to the help of sequencing technology, numerous RNA sequences are newly discovered without knowing their binding partner RBPs. Therefore...
Autores principales: | Chung, Taesu, Kim, Dongsup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485761/ https://www.ncbi.nlm.nih.gov/pubmed/31026297 http://dx.doi.org/10.1371/journal.pone.0216257 |
Ejemplares similares
-
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction
por: Han, Youngmahn, et al.
Publicado: (2017) -
In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning
por: Lee, Kyoungyeul, et al.
Publicado: (2019) -
SH3 Domain-Peptide Binding Energy Calculations Based on Structural Ensemble and Multiple Peptide Templates
por: Hong, Seungpyo, et al.
Publicado: (2010) -
Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities
por: Son, Jeongtae, et al.
Publicado: (2021) -
DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites
por: Zhang, Jidong, et al.
Publicado: (2022)