Cargando…
Machine learning in a data-limited regime: Augmenting experiments with synthetic data uncovers order in crumpled sheets
Machine learning has gained widespread attention as a powerful tool to identify structure in complex, high-dimensional data. However, these techniques are ostensibly inapplicable for experimental systems where data are scarce or expensive to obtain. Here, we introduce a strategy to resolve this impa...
Autores principales: | Hoffmann, Jordan, Bar-Sinai, Yohai, Lee, Lisa M., Andrejevic, Jovana, Mishra, Shruti, Rubinstein, Shmuel M., Rycroft, Chris H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486215/ https://www.ncbi.nlm.nih.gov/pubmed/31032399 http://dx.doi.org/10.1126/sciadv.aau6792 |
Ejemplares similares
-
A model for the fragmentation kinetics of crumpled thin sheets
por: Andrejevic, Jovana, et al.
Publicado: (2021) -
Author Correction: A model for the fragmentation kinetics of crumpled thin sheets
por: Andrejevic, Jovana, et al.
Publicado: (2021) -
Graphene Oxide Sheets in Solvents: To Crumple or Not
To Crumple?
por: Koltonow, Andrew R., et al.
Publicado: (2017) -
Thermal crumpling of perforated two-dimensional sheets
por: Yllanes, David, et al.
Publicado: (2017) -
Memory from coupled instabilities in unfolded crumpled sheets
por: Shohat, Dor, et al.
Publicado: (2022)