Cargando…
A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors
Neuromorphic computing is an approach to efficiently solve complicated learning and cognition problems like the human brain using electronics. To efficiently implement the functionality of biological neurons, nanodevices and their implementations in circuits are exploited. Here, we describe a genera...
Autores principales: | Yue, Kun, Liu, Yizhou, Lake, Roger K., Parker, Alice C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486231/ https://www.ncbi.nlm.nih.gov/pubmed/31032402 http://dx.doi.org/10.1126/sciadv.aau8170 |
Ejemplares similares
-
Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing
por: Wang, Rui, et al.
Publicado: (2018) -
Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications
por: Wang, Changhong, et al.
Publicado: (2016) -
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2019) -
Editorial: Memristor Computing for Neuromorphic Systems
por: Min, Kyeong-Sik, et al.
Publicado: (2021) -
Ferroelectric Domain Wall Memristor
por: McConville, James P. V., et al.
Publicado: (2020)