Cargando…
SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles
Characterization of individual cell types is fundamental to the study of multicellular samples. Single-cell RNAseq techniques, which allow high-throughput expression profiling of individual cells, have significantly advanced our ability of this task. Currently, most of the scRNA-seq data analyses ar...
Autores principales: | Xie, Peng, Gao, Mingxuan, Wang, Chunming, Zhang, Jianfei, Noel, Pawan, Yang, Chaoyong, Von Hoff, Daniel, Han, Haiyong, Zhang, Michael Q, Lin, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486558/ https://www.ncbi.nlm.nih.gov/pubmed/30799483 http://dx.doi.org/10.1093/nar/gkz116 |
Ejemplares similares
-
Information-theoretic identification of predictive SNPs and supervised visualization of genome-wide association studies
por: Bhasi, Kavitha, et al.
Publicado: (2006) -
Imaging unlabeled proteins on DNA with super-resolution
por: Meijering, Anna E C, et al.
Publicado: (2020) -
ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system
por: Hughey, Jacob J., et al.
Publicado: (2016) -
TAGOOS: genome-wide supervised learning of non-coding loci associated to complex phenotypes
por: González, Aitor, et al.
Publicado: (2019) -
Quantitative, super-resolution localization of small RNAs with sRNA-PAINT
por: Huang, Kun, et al.
Publicado: (2020)