Cargando…
DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies
Although rapid progress has been made in computational approaches for prioritizing cancer driver genes, research is far from achieving the ultimate goal of discovering a complete catalog of genes truly associated with cancer. Driver gene lists predicted from these computational tools lack consistenc...
Autores principales: | Han, Yi, Yang, Juze, Qian, Xinyi, Cheng, Wei-Chung, Liu, Shu-Hsuan, Hua, Xing, Zhou, Liyuan, Yang, Yaning, Wu, Qingbiao, Liu, Pengyuan, Lu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486576/ https://www.ncbi.nlm.nih.gov/pubmed/30773592 http://dx.doi.org/10.1093/nar/gkz096 |
Ejemplares similares
-
Corrigendum to article “DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies’’
por: Han, Yi, et al.
Publicado: (2021) -
SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors
por: Newberg, Justin Y, et al.
Publicado: (2018) -
Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients
por: Guo, Wei-Feng, et al.
Publicado: (2021) -
Functional impact bias reveals cancer drivers
por: Gonzalez-Perez, Abel, et al.
Publicado: (2012) -
Discovery of cancer common and specific driver gene sets
por: Zhang, Junhua, et al.
Publicado: (2017)