Cargando…
High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide
Scalable quantum networking requires quantum systems with quantum processing capabilities. Solid state spin systems with reliable spin–optical interfaces are a leading hardware in this regard. However, available systems suffer from large electron–phonon interaction or fast spin dephasing. Here, we d...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486615/ https://www.ncbi.nlm.nih.gov/pubmed/31028260 http://dx.doi.org/10.1038/s41467-019-09873-9 |
_version_ | 1783414373630345216 |
---|---|
author | Nagy, Roland Niethammer, Matthias Widmann, Matthias Chen, Yu-Chen Udvarhelyi, Péter Bonato, Cristian Hassan, Jawad Ul Karhu, Robin Ivanov, Ivan G. Son, Nguyen Tien Maze, Jeronimo R. Ohshima, Takeshi Soykal, Öney O. Gali, Ádám Lee, Sang-Yun Kaiser, Florian Wrachtrup, Jörg |
author_facet | Nagy, Roland Niethammer, Matthias Widmann, Matthias Chen, Yu-Chen Udvarhelyi, Péter Bonato, Cristian Hassan, Jawad Ul Karhu, Robin Ivanov, Ivan G. Son, Nguyen Tien Maze, Jeronimo R. Ohshima, Takeshi Soykal, Öney O. Gali, Ádám Lee, Sang-Yun Kaiser, Florian Wrachtrup, Jörg |
author_sort | Nagy, Roland |
collection | PubMed |
description | Scalable quantum networking requires quantum systems with quantum processing capabilities. Solid state spin systems with reliable spin–optical interfaces are a leading hardware in this regard. However, available systems suffer from large electron–phonon interaction or fast spin dephasing. Here, we demonstrate that the negatively charged silicon-vacancy centre in silicon carbide is immune to both drawbacks. Thanks to its (4)A(2) symmetry in ground and excited states, optical resonances are stable with near-Fourier-transform-limited linewidths, allowing exploitation of the spin selectivity of the optical transitions. In combination with millisecond-long spin coherence times originating from the high-purity crystal, we demonstrate high-fidelity optical initialization and coherent spin control, which we exploit to show coherent coupling to single nuclear spins with ∼1 kHz resolution. The summary of our findings makes this defect a prime candidate for realising memory-assisted quantum network applications using semiconductor-based spin-to-photon interfaces and coherently coupled nuclear spins. |
format | Online Article Text |
id | pubmed-6486615 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64866152019-04-29 High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide Nagy, Roland Niethammer, Matthias Widmann, Matthias Chen, Yu-Chen Udvarhelyi, Péter Bonato, Cristian Hassan, Jawad Ul Karhu, Robin Ivanov, Ivan G. Son, Nguyen Tien Maze, Jeronimo R. Ohshima, Takeshi Soykal, Öney O. Gali, Ádám Lee, Sang-Yun Kaiser, Florian Wrachtrup, Jörg Nat Commun Article Scalable quantum networking requires quantum systems with quantum processing capabilities. Solid state spin systems with reliable spin–optical interfaces are a leading hardware in this regard. However, available systems suffer from large electron–phonon interaction or fast spin dephasing. Here, we demonstrate that the negatively charged silicon-vacancy centre in silicon carbide is immune to both drawbacks. Thanks to its (4)A(2) symmetry in ground and excited states, optical resonances are stable with near-Fourier-transform-limited linewidths, allowing exploitation of the spin selectivity of the optical transitions. In combination with millisecond-long spin coherence times originating from the high-purity crystal, we demonstrate high-fidelity optical initialization and coherent spin control, which we exploit to show coherent coupling to single nuclear spins with ∼1 kHz resolution. The summary of our findings makes this defect a prime candidate for realising memory-assisted quantum network applications using semiconductor-based spin-to-photon interfaces and coherently coupled nuclear spins. Nature Publishing Group UK 2019-04-26 /pmc/articles/PMC6486615/ /pubmed/31028260 http://dx.doi.org/10.1038/s41467-019-09873-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Nagy, Roland Niethammer, Matthias Widmann, Matthias Chen, Yu-Chen Udvarhelyi, Péter Bonato, Cristian Hassan, Jawad Ul Karhu, Robin Ivanov, Ivan G. Son, Nguyen Tien Maze, Jeronimo R. Ohshima, Takeshi Soykal, Öney O. Gali, Ádám Lee, Sang-Yun Kaiser, Florian Wrachtrup, Jörg High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide |
title | High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide |
title_full | High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide |
title_fullStr | High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide |
title_full_unstemmed | High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide |
title_short | High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide |
title_sort | high-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486615/ https://www.ncbi.nlm.nih.gov/pubmed/31028260 http://dx.doi.org/10.1038/s41467-019-09873-9 |
work_keys_str_mv | AT nagyroland highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT niethammermatthias highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT widmannmatthias highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT chenyuchen highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT udvarhelyipeter highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT bonatocristian highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT hassanjawadul highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT karhurobin highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT ivanovivang highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT sonnguyentien highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT mazejeronimor highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT ohshimatakeshi highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT soykaloneyo highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT galiadam highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT leesangyun highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT kaiserflorian highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide AT wrachtrupjorg highfidelityspinandopticalcontrolofsinglesiliconvacancycentresinsiliconcarbide |