Cargando…
Adapting machine-learning algorithms to design gene circuits
BACKGROUND: Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), a...
Autor principal: | Hiscock, Tom W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487017/ https://www.ncbi.nlm.nih.gov/pubmed/31029103 http://dx.doi.org/10.1186/s12859-019-2788-3 |
Ejemplares similares
-
Machine Learning Algorithms for understanding the determinants of under-five Mortality
por: Saroj, Rakesh Kumar, et al.
Publicado: (2022) -
Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy
por: Ahmadi, Matthew, et al.
Publicado: (2018) -
Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies
por: Ye, Bin, et al.
Publicado: (2019) -
Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews
por: Popoff, E., et al.
Publicado: (2020) -
Modular, rule-based modeling for the design of eukaryotic synthetic gene circuits
por: Marchisio, Mario Andrea, et al.
Publicado: (2013)