Cargando…

A mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of Trypanosoma brucei rhodesiense and T. b. gambiense sleeping sickness in Uganda

BACKGROUND: Human and animal African trypanosomiases impose a large economic and health burden in their endemic regions. Large strides have been made in the control of human African trypanosomiasis (HAT), yet these efforts have largely focused on the non-zoonotic form of the disease. Using a mathema...

Descripción completa

Detalles Bibliográficos
Autores principales: Meisner, Julianne, Barnabas, Ruanne V., Rabinowitz, Peter M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487357/
https://www.ncbi.nlm.nih.gov/pubmed/31061906
http://dx.doi.org/10.1016/j.parepi.2019.e00106
_version_ 1783414485476704256
author Meisner, Julianne
Barnabas, Ruanne V.
Rabinowitz, Peter M.
author_facet Meisner, Julianne
Barnabas, Ruanne V.
Rabinowitz, Peter M.
author_sort Meisner, Julianne
collection PubMed
description BACKGROUND: Human and animal African trypanosomiases impose a large economic and health burden in their endemic regions. Large strides have been made in the control of human African trypanosomiasis (HAT), yet these efforts have largely focused on the non-zoonotic form of the disease. Using a mathematical model with a 10 year time horizon, we demonstrate the role of the cattle treatment with trypanocides in the epidemiology of zoonotic and non-zoonotic HAT in Uganda, and its potential implications on elimination and eradication of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We created two compartmental, deterministic models, each comprised of three sub-models: humans, the tsetse fly vector (Glossina fuscipes fuscipes), and cattle. We applied these models to two HAT foci in Uganda: the gambiense (chronic, non-zoonotic) form in the Northern Region, and the rhodesiense (acute, zoonotic) form in the Eastern Region. Parameters were derived from prior literature or assumed. In both foci we assumed G. fuscipes fuscipes expresses zoophilic biting behavior. With trypanocide treatment of cattle administered every 3 months, treatment in stage I (representing engagement in active or passive surveillance) had a larger impact on HAT burden than cattle treatment coverage. However increasing cattle treatment coverage allowed for further reduction in prevalence in both foci. Using these model parameters, our estimated R(0) suggests humans cannot alone sustain the HAT epidemic in Uganda. CONCLUSIONS/SIGNIFICANCE: Even in the absence of zoonotic transmission, loss of a preferred tsetse host species can affect HAT risk. Thus One Health strategies which integrate HAT and animal African trypanosomiasis control may improve the timeliness and sustainability of gHAT and rHAT elimination and eradication in Uganda. Furthermore, such strategies reduce the burden of a high-morbidity livestock disease of economic importance.
format Online
Article
Text
id pubmed-6487357
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-64873572019-05-06 A mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of Trypanosoma brucei rhodesiense and T. b. gambiense sleeping sickness in Uganda Meisner, Julianne Barnabas, Ruanne V. Rabinowitz, Peter M. Parasite Epidemiol Control Article BACKGROUND: Human and animal African trypanosomiases impose a large economic and health burden in their endemic regions. Large strides have been made in the control of human African trypanosomiasis (HAT), yet these efforts have largely focused on the non-zoonotic form of the disease. Using a mathematical model with a 10 year time horizon, we demonstrate the role of the cattle treatment with trypanocides in the epidemiology of zoonotic and non-zoonotic HAT in Uganda, and its potential implications on elimination and eradication of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We created two compartmental, deterministic models, each comprised of three sub-models: humans, the tsetse fly vector (Glossina fuscipes fuscipes), and cattle. We applied these models to two HAT foci in Uganda: the gambiense (chronic, non-zoonotic) form in the Northern Region, and the rhodesiense (acute, zoonotic) form in the Eastern Region. Parameters were derived from prior literature or assumed. In both foci we assumed G. fuscipes fuscipes expresses zoophilic biting behavior. With trypanocide treatment of cattle administered every 3 months, treatment in stage I (representing engagement in active or passive surveillance) had a larger impact on HAT burden than cattle treatment coverage. However increasing cattle treatment coverage allowed for further reduction in prevalence in both foci. Using these model parameters, our estimated R(0) suggests humans cannot alone sustain the HAT epidemic in Uganda. CONCLUSIONS/SIGNIFICANCE: Even in the absence of zoonotic transmission, loss of a preferred tsetse host species can affect HAT risk. Thus One Health strategies which integrate HAT and animal African trypanosomiasis control may improve the timeliness and sustainability of gHAT and rHAT elimination and eradication in Uganda. Furthermore, such strategies reduce the burden of a high-morbidity livestock disease of economic importance. Elsevier 2019-04-16 /pmc/articles/PMC6487357/ /pubmed/31061906 http://dx.doi.org/10.1016/j.parepi.2019.e00106 Text en © 2019 The Authors. Published by Elsevier Ltd on behalf of World Federation of Parasitologists. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Meisner, Julianne
Barnabas, Ruanne V.
Rabinowitz, Peter M.
A mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of Trypanosoma brucei rhodesiense and T. b. gambiense sleeping sickness in Uganda
title A mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of Trypanosoma brucei rhodesiense and T. b. gambiense sleeping sickness in Uganda
title_full A mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of Trypanosoma brucei rhodesiense and T. b. gambiense sleeping sickness in Uganda
title_fullStr A mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of Trypanosoma brucei rhodesiense and T. b. gambiense sleeping sickness in Uganda
title_full_unstemmed A mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of Trypanosoma brucei rhodesiense and T. b. gambiense sleeping sickness in Uganda
title_short A mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of Trypanosoma brucei rhodesiense and T. b. gambiense sleeping sickness in Uganda
title_sort mathematical model for evaluating the role of trypanocide treatment of cattle in the epidemiology and control of trypanosoma brucei rhodesiense and t. b. gambiense sleeping sickness in uganda
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487357/
https://www.ncbi.nlm.nih.gov/pubmed/31061906
http://dx.doi.org/10.1016/j.parepi.2019.e00106
work_keys_str_mv AT meisnerjulianne amathematicalmodelforevaluatingtheroleoftrypanocidetreatmentofcattleintheepidemiologyandcontroloftrypanosomabruceirhodesienseandtbgambiensesleepingsicknessinuganda
AT barnabasruannev amathematicalmodelforevaluatingtheroleoftrypanocidetreatmentofcattleintheepidemiologyandcontroloftrypanosomabruceirhodesienseandtbgambiensesleepingsicknessinuganda
AT rabinowitzpeterm amathematicalmodelforevaluatingtheroleoftrypanocidetreatmentofcattleintheepidemiologyandcontroloftrypanosomabruceirhodesienseandtbgambiensesleepingsicknessinuganda
AT meisnerjulianne mathematicalmodelforevaluatingtheroleoftrypanocidetreatmentofcattleintheepidemiologyandcontroloftrypanosomabruceirhodesienseandtbgambiensesleepingsicknessinuganda
AT barnabasruannev mathematicalmodelforevaluatingtheroleoftrypanocidetreatmentofcattleintheepidemiologyandcontroloftrypanosomabruceirhodesienseandtbgambiensesleepingsicknessinuganda
AT rabinowitzpeterm mathematicalmodelforevaluatingtheroleoftrypanocidetreatmentofcattleintheepidemiologyandcontroloftrypanosomabruceirhodesienseandtbgambiensesleepingsicknessinuganda