Cargando…
A quantitative SVM approach potentially improves the accuracy of magnetic resonance spectroscopy in the preoperative evaluation of the grades of diffuse gliomas
OBJECTIVES: To investigate the association between proton magnetic resonance spectroscopy ((1)H-MRS) metabolic features and the grade of gliomas, and to establish a machine-learning model to predict the glioma grade. METHODS: This study included 112 glioma patients who were divided into the training...
Autores principales: | Qi, Chong, Li, Yiming, Fan, Xing, Jiang, Yin, Wang, Rui, Yang, Song, Meng, Lanxi, Jiang, Tao, Li, Shaowu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487359/ https://www.ncbi.nlm.nih.gov/pubmed/31035232 http://dx.doi.org/10.1016/j.nicl.2019.101835 |
Ejemplares similares
-
Evaluation of cerebral glioma using 3T diffusion kurtosis tensor imaging and the relationship between diffusion kurtosis metrics and tumor cellularity
por: Qi, Chong, et al.
Publicado: (2017) -
MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
por: Li, Yiming, et al.
Publicado: (2017) -
A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas
por: Liu, Xing, et al.
Publicado: (2018) -
Identifying biomarkers associated with tumor growth rate: a longitudinal preoperative magnetic resonance imaging follow-up of low-grade gliomas
por: Liu, Yukun, et al.
Publicado: (2022) -
Preoperative Radiomics Analysis of 1p/19q Status in WHO Grade II Gliomas
por: Fan, Ziwen, et al.
Publicado: (2021)