Cargando…
Species‐specific susceptibility to cannabis‐induced convulsions
BACKGROUND AND PURPOSE: Numerous claims are made for cannabis' therapeutic utility upon human seizures, but concerns persist about risks. A potential confounder is the presence of both Δ(9)‐tetrahydrocannabinol (THC), variously reported to be pro‐ and anticonvulsant, and cannabidiol (CBD), wide...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487554/ https://www.ncbi.nlm.nih.gov/pubmed/29457829 http://dx.doi.org/10.1111/bph.14165 |
_version_ | 1783414518592831488 |
---|---|
author | Whalley, Benjamin J Lin, Hong Bell, Lynne Hill, Thomas Patel, Amesha Gray, Roy A Elizabeth Roberts, C Devinsky, Orrin Bazelot, Michael Williams, Claire M Stephens, Gary J |
author_facet | Whalley, Benjamin J Lin, Hong Bell, Lynne Hill, Thomas Patel, Amesha Gray, Roy A Elizabeth Roberts, C Devinsky, Orrin Bazelot, Michael Williams, Claire M Stephens, Gary J |
author_sort | Whalley, Benjamin J |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Numerous claims are made for cannabis' therapeutic utility upon human seizures, but concerns persist about risks. A potential confounder is the presence of both Δ(9)‐tetrahydrocannabinol (THC), variously reported to be pro‐ and anticonvulsant, and cannabidiol (CBD), widely confirmed as anticonvulsant. Therefore, we investigated effects of prolonged exposure to different THC/CBD cannabis extracts on seizure activity and associated measures of endocannabinoid (eCB) system signalling. EXPERIMENTAL APPROACH: Cannabis extract effects on in vivo neurological and behavioural responses, and on bioanalyte levels, were measured in rats and dogs. Extract effects on seizure activity were measured using electroencephalography telemetry in rats. eCB signalling was also investigated using radioligand binding in cannabis extract‐treated rats and treatment‐naïve rat, mouse, chicken, dog and human tissue. KEY RESULTS: Prolonged exposure to cannabis extracts caused spontaneous, generalized seizures, subserved by epileptiform discharges in rats, but not dogs, and produced higher THC, but lower 11‐hydroxy‐THC (11‐OH‐THC) and CBD, plasma concentrations in rats versus dogs. In the same rats, prolonged exposure to cannabis also impaired cannabinoid type 1 receptor (CB(1) receptor)‐mediated signalling. Profiling CB(1) receptor expression, basal activity, extent of activation and sensitivity to THC suggested interspecies differences in eCB signalling, being more pronounced in a species that exhibited cannabis extract‐induced seizures (rat) than one that did not (dog). CONCLUSIONS AND IMPLICATIONS: Sustained cannabis extract treatment caused differential seizure, behavioural and bioanalyte levels between rats and dogs. Supporting radioligand binding data suggest species differences in eCB signalling. Interspecies variations may have important implications for predicting cannabis‐induced convulsions from animal models. LINKED ARTICLES: This article is part of a themed section on 8(th) European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc |
format | Online Article Text |
id | pubmed-6487554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64875542019-05-06 Species‐specific susceptibility to cannabis‐induced convulsions Whalley, Benjamin J Lin, Hong Bell, Lynne Hill, Thomas Patel, Amesha Gray, Roy A Elizabeth Roberts, C Devinsky, Orrin Bazelot, Michael Williams, Claire M Stephens, Gary J Br J Pharmacol Themed Section: Research Papers BACKGROUND AND PURPOSE: Numerous claims are made for cannabis' therapeutic utility upon human seizures, but concerns persist about risks. A potential confounder is the presence of both Δ(9)‐tetrahydrocannabinol (THC), variously reported to be pro‐ and anticonvulsant, and cannabidiol (CBD), widely confirmed as anticonvulsant. Therefore, we investigated effects of prolonged exposure to different THC/CBD cannabis extracts on seizure activity and associated measures of endocannabinoid (eCB) system signalling. EXPERIMENTAL APPROACH: Cannabis extract effects on in vivo neurological and behavioural responses, and on bioanalyte levels, were measured in rats and dogs. Extract effects on seizure activity were measured using electroencephalography telemetry in rats. eCB signalling was also investigated using radioligand binding in cannabis extract‐treated rats and treatment‐naïve rat, mouse, chicken, dog and human tissue. KEY RESULTS: Prolonged exposure to cannabis extracts caused spontaneous, generalized seizures, subserved by epileptiform discharges in rats, but not dogs, and produced higher THC, but lower 11‐hydroxy‐THC (11‐OH‐THC) and CBD, plasma concentrations in rats versus dogs. In the same rats, prolonged exposure to cannabis also impaired cannabinoid type 1 receptor (CB(1) receptor)‐mediated signalling. Profiling CB(1) receptor expression, basal activity, extent of activation and sensitivity to THC suggested interspecies differences in eCB signalling, being more pronounced in a species that exhibited cannabis extract‐induced seizures (rat) than one that did not (dog). CONCLUSIONS AND IMPLICATIONS: Sustained cannabis extract treatment caused differential seizure, behavioural and bioanalyte levels between rats and dogs. Supporting radioligand binding data suggest species differences in eCB signalling. Interspecies variations may have important implications for predicting cannabis‐induced convulsions from animal models. LINKED ARTICLES: This article is part of a themed section on 8(th) European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc John Wiley and Sons Inc. 2018-03-25 2019-05 /pmc/articles/PMC6487554/ /pubmed/29457829 http://dx.doi.org/10.1111/bph.14165 Text en © 2018 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Themed Section: Research Papers Whalley, Benjamin J Lin, Hong Bell, Lynne Hill, Thomas Patel, Amesha Gray, Roy A Elizabeth Roberts, C Devinsky, Orrin Bazelot, Michael Williams, Claire M Stephens, Gary J Species‐specific susceptibility to cannabis‐induced convulsions |
title | Species‐specific susceptibility to cannabis‐induced convulsions |
title_full | Species‐specific susceptibility to cannabis‐induced convulsions |
title_fullStr | Species‐specific susceptibility to cannabis‐induced convulsions |
title_full_unstemmed | Species‐specific susceptibility to cannabis‐induced convulsions |
title_short | Species‐specific susceptibility to cannabis‐induced convulsions |
title_sort | species‐specific susceptibility to cannabis‐induced convulsions |
topic | Themed Section: Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487554/ https://www.ncbi.nlm.nih.gov/pubmed/29457829 http://dx.doi.org/10.1111/bph.14165 |
work_keys_str_mv | AT whalleybenjaminj speciesspecificsusceptibilitytocannabisinducedconvulsions AT linhong speciesspecificsusceptibilitytocannabisinducedconvulsions AT belllynne speciesspecificsusceptibilitytocannabisinducedconvulsions AT hillthomas speciesspecificsusceptibilitytocannabisinducedconvulsions AT patelamesha speciesspecificsusceptibilitytocannabisinducedconvulsions AT grayroya speciesspecificsusceptibilitytocannabisinducedconvulsions AT elizabethrobertsc speciesspecificsusceptibilitytocannabisinducedconvulsions AT devinskyorrin speciesspecificsusceptibilitytocannabisinducedconvulsions AT bazelotmichael speciesspecificsusceptibilitytocannabisinducedconvulsions AT williamsclairem speciesspecificsusceptibilitytocannabisinducedconvulsions AT stephensgaryj speciesspecificsusceptibilitytocannabisinducedconvulsions |