Cargando…
Learning and forgetting using reinforced Bayesian change detection
Agents living in volatile environments must be able to detect changes in contingencies while refraining to adapt to unexpected events that are caused by noise. In Reinforcement Learning (RL) frameworks, this requires learning rates that adapt to past reliability of the model. The observation that be...
Autores principales: | Moens, Vincent, Zénon, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488101/ https://www.ncbi.nlm.nih.gov/pubmed/30995214 http://dx.doi.org/10.1371/journal.pcbi.1006713 |
Ejemplares similares
-
Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation
por: Kato, Ayaka, et al.
Publicado: (2016) -
Reinforcement Learning With Parsimonious Computation and a Forgetting Process
por: Toyama, Asako, et al.
Publicado: (2019) -
Benchmarking for Bayesian Reinforcement Learning
por: Castronovo, Michael, et al.
Publicado: (2016) -
Bayesian reinforcement learning: a survey
por: Ghavamzadeh, Mohammed, et al.
Publicado: (2015) -
Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning
por: Hafez, Muhammad Burhan, et al.
Publicado: (2023)