Cargando…

Human peripheral blood-derived exosomes for microRNA delivery

Exosomes serve important functions in cell-to-cell communication and biological functions by serving as a delivery cargo shuttle for various molecules. The application of an improved delivery method for microRNAs (miRNAs/miRs) may enhance their potential as a therapeutic tool in cardiac diseases. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Ji-Young, Park, Hyewon, Kim, Hyoeun, Mun, Dasom, Park, Hyelim, Yun, Nuri, Joung, Boyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488179/
https://www.ncbi.nlm.nih.gov/pubmed/30942393
http://dx.doi.org/10.3892/ijmm.2019.4150
Descripción
Sumario:Exosomes serve important functions in cell-to-cell communication and biological functions by serving as a delivery cargo shuttle for various molecules. The application of an improved delivery method for microRNAs (miRNAs/miRs) may enhance their potential as a therapeutic tool in cardiac diseases. Thus, the present study investigated whether human peripheral blood-derived exosomes may be used as a delivery cargo system for miRNAs, and whether the delivery of miR-21 using a human peripheral blood derived-exosome may influence the degree of remodeling following myocardial infarction (MI). In H9C2 and HL-1 cells, miR-21 expression was successfully regulated by treatment with human peripheral blood derived-exosomes loaded with an miR-21 mimic or inhibitor compared with untreated cells. In addition, the mRNA and protein expression levels of SMAD family member 7 (Smad7), phosphatase and tensin homolog (PTEN) and matrix metalloproteinase 2 (MMP2), which are involved in cardiac fibrosis, were associated with the uptake of miR-21 mimic- or inhibitor-loaded exosomes. Similarly, the in vivo mRNA and protein expression of Smad7, PTEN and MMP2 were altered following treatment with miR-21 mimic- or inhibitor-loaded exosomes. Furthermore, miR-21 mimic-loaded exosomes enhanced fibrosis, whereas miR-21 inhibitor-loaded exosomes reduced fibrosis in a mouse MI model. These results suggested that miRNA-loaded human peripheral blood derived-exosomes may be used as a therapeutic tool for cardiac diseases.