Cargando…

Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins

[Image: see text] The global dimensions and amplitudes of conformational fluctuations of intrinsically disordered proteins are governed, in part, by the linear segregation versus clustering of oppositely charged residues within the primary sequence. Ion mobility-mass spectrometry (IM-MS) affords uni...

Descripción completa

Detalles Bibliográficos
Autores principales: Beveridge, Rebecca, Migas, Lukasz G., Das, Rahul K., Pappu, Rohit V., Kriwacki, Richard W., Barran, Perdita E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488185/
https://www.ncbi.nlm.nih.gov/pubmed/30823702
http://dx.doi.org/10.1021/jacs.8b13483
_version_ 1783414618709819392
author Beveridge, Rebecca
Migas, Lukasz G.
Das, Rahul K.
Pappu, Rohit V.
Kriwacki, Richard W.
Barran, Perdita E.
author_facet Beveridge, Rebecca
Migas, Lukasz G.
Das, Rahul K.
Pappu, Rohit V.
Kriwacki, Richard W.
Barran, Perdita E.
author_sort Beveridge, Rebecca
collection PubMed
description [Image: see text] The global dimensions and amplitudes of conformational fluctuations of intrinsically disordered proteins are governed, in part, by the linear segregation versus clustering of oppositely charged residues within the primary sequence. Ion mobility-mass spectrometry (IM-MS) affords unique advantages for probing the conformational consequences of the linear patterning of oppositely charged residues because it measures and separates proteins electrosprayed from solution on the basis of charge and shape. Here, we use IM-MS to measure the conformational consequences of charge patterning on the C-terminal intrinsically disordered region (p27 IDR) of the cell cycle inhibitory protein p27(Kip1). We report the range of charge states and accompanying collisional cross section distributions for wild-type p27 IDR and two variants with identical amino acid compositions, κ14 and κ56, distinguished by the extent of linear mixing versus segregation of oppositely charged residues. Wild-type p27 IDR (κ31) and κ14, where the oppositely charged residues are more evenly distributed, exhibit a broad distribution of charge states. This is concordant with high degrees of conformational heterogeneity in solution. By contrast, κ56 with linear segregation of oppositely charged residues leads to limited conformational heterogeneity and a narrow distribution of charged states. Gas-phase molecular dynamics simulations demonstrate that the interplay between chain solvation and intrachain interactions (self-solvation) leads to conformational distributions that are modulated by salt concentration, with the wild-type sequence showing the most sensitivity to changes in salt concentration. These results suggest that the charge patterning within the wild-type p27 IDR may be optimized to sample both highly solvated and self-solvated conformational states.
format Online
Article
Text
id pubmed-6488185
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-64881852019-04-30 Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins Beveridge, Rebecca Migas, Lukasz G. Das, Rahul K. Pappu, Rohit V. Kriwacki, Richard W. Barran, Perdita E. J Am Chem Soc [Image: see text] The global dimensions and amplitudes of conformational fluctuations of intrinsically disordered proteins are governed, in part, by the linear segregation versus clustering of oppositely charged residues within the primary sequence. Ion mobility-mass spectrometry (IM-MS) affords unique advantages for probing the conformational consequences of the linear patterning of oppositely charged residues because it measures and separates proteins electrosprayed from solution on the basis of charge and shape. Here, we use IM-MS to measure the conformational consequences of charge patterning on the C-terminal intrinsically disordered region (p27 IDR) of the cell cycle inhibitory protein p27(Kip1). We report the range of charge states and accompanying collisional cross section distributions for wild-type p27 IDR and two variants with identical amino acid compositions, κ14 and κ56, distinguished by the extent of linear mixing versus segregation of oppositely charged residues. Wild-type p27 IDR (κ31) and κ14, where the oppositely charged residues are more evenly distributed, exhibit a broad distribution of charge states. This is concordant with high degrees of conformational heterogeneity in solution. By contrast, κ56 with linear segregation of oppositely charged residues leads to limited conformational heterogeneity and a narrow distribution of charged states. Gas-phase molecular dynamics simulations demonstrate that the interplay between chain solvation and intrachain interactions (self-solvation) leads to conformational distributions that are modulated by salt concentration, with the wild-type sequence showing the most sensitivity to changes in salt concentration. These results suggest that the charge patterning within the wild-type p27 IDR may be optimized to sample both highly solvated and self-solvated conformational states. American Chemical Society 2019-03-01 2019-03-27 /pmc/articles/PMC6488185/ /pubmed/30823702 http://dx.doi.org/10.1021/jacs.8b13483 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Beveridge, Rebecca
Migas, Lukasz G.
Das, Rahul K.
Pappu, Rohit V.
Kriwacki, Richard W.
Barran, Perdita E.
Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins
title Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins
title_full Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins
title_fullStr Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins
title_full_unstemmed Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins
title_short Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins
title_sort ion mobility mass spectrometry uncovers the impact of the patterning of oppositely charged residues on the conformational distributions of intrinsically disordered proteins
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488185/
https://www.ncbi.nlm.nih.gov/pubmed/30823702
http://dx.doi.org/10.1021/jacs.8b13483
work_keys_str_mv AT beveridgerebecca ionmobilitymassspectrometryuncoverstheimpactofthepatterningofoppositelychargedresiduesontheconformationaldistributionsofintrinsicallydisorderedproteins
AT migaslukaszg ionmobilitymassspectrometryuncoverstheimpactofthepatterningofoppositelychargedresiduesontheconformationaldistributionsofintrinsicallydisorderedproteins
AT dasrahulk ionmobilitymassspectrometryuncoverstheimpactofthepatterningofoppositelychargedresiduesontheconformationaldistributionsofintrinsicallydisorderedproteins
AT pappurohitv ionmobilitymassspectrometryuncoverstheimpactofthepatterningofoppositelychargedresiduesontheconformationaldistributionsofintrinsicallydisorderedproteins
AT kriwackirichardw ionmobilitymassspectrometryuncoverstheimpactofthepatterningofoppositelychargedresiduesontheconformationaldistributionsofintrinsicallydisorderedproteins
AT barranperditae ionmobilitymassspectrometryuncoverstheimpactofthepatterningofoppositelychargedresiduesontheconformationaldistributionsofintrinsicallydisorderedproteins