Cargando…
A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat
Achieving rapid definitive hemostasis is essential to ensure survival of patients with massive bleeding in pre-hospital care. It is however challenging to develop hemostatic agents or dressings that simultaneously deliver a fast, long-lasting and safe treatment of hemorrhage. Here, we integrate meso...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488602/ https://www.ncbi.nlm.nih.gov/pubmed/31036816 http://dx.doi.org/10.1038/s41467-019-09849-9 |
Sumario: | Achieving rapid definitive hemostasis is essential to ensure survival of patients with massive bleeding in pre-hospital care. It is however challenging to develop hemostatic agents or dressings that simultaneously deliver a fast, long-lasting and safe treatment of hemorrhage. Here, we integrate meso-/micro-porosity, blood coagulation and stability into a flexible zeolite-cotton hybrid hemostat. We employ an on-site template-free growth route that tightly binds mesoporous single-crystal chabazite zeolite onto the surface of cotton fibers. This hemostatic material maintains high procoagulant activity after water flow treatment. Chabazite particles are firmly anchored onto the cotton surface with < 1% leaching after 10 min of sonication. The as-synthesized hemostatic device has superior hemostatic performance over most other clay or zeolite-based inorganic hemostats, in terms of higher procoagulant activity, minimized loss of active components and better scalability for practical applications (a hemostatic T-shirt is hereby demonstrated as an example). |
---|