Cargando…

Nickel-catalyzed Suzuki–Miyaura cross-couplings of aldehydes

Transition-metal-catalyzed cross-couplings have been extensively used in the pharmaceutical and agrochemical industries for the construction of diverse C–C bonds. Conventional cross-coupling reactions require reactive electrophilic coupling partners, such as organohalides or sulfonates, which are no...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Lin, Srimontree, Watchara, Zhu, Chen, Maity, Bholanath, Liu, Xiangqian, Cavallo, Luigi, Rueping, Magnus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488620/
https://www.ncbi.nlm.nih.gov/pubmed/31036821
http://dx.doi.org/10.1038/s41467-019-09766-x
Descripción
Sumario:Transition-metal-catalyzed cross-couplings have been extensively used in the pharmaceutical and agrochemical industries for the construction of diverse C–C bonds. Conventional cross-coupling reactions require reactive electrophilic coupling partners, such as organohalides or sulfonates, which are not environmentally friendly and not naturally abundant. Another disadvantage associated with these transformations is the need for an exogenous base to facilitate the key transmetalation step, and this reagent inevitably induces side reactions and limits the substrate scope. Here, we report an unconventional Suzuki-type approach to the synthesis of biaryls, through nickel-catalyzed deformylative cross coupling of aldehydes with organoboron reagents under base-free conditions. The transformation tolerates structurally diverse (hetero)aryl substituents on both coupling partners and shows high reactivity and excellent functional group tolerance. Furthermore, the protocol was carried out on gram scale and successfully applied to the functionalization of complex biologically active molecules. Mechanistic investigations support a catalytic cycle involving the oxidative addition of the nickel into the aldehyde C(acyl)–H bond with subsequent hydride transfer, transmetalation, decarbonylation and reductive elimination processes.