Cargando…
A 19-miRNA Support Vector Machine classifier and a 6-miRNA risk score system designed for ovarian cancer patients
Ovarian cancer (OC) is the most common gynecologic malignancy with high incidence and mortality. The present study aimed to develop approaches for determining the recurrence type and identify potential miRNA markers for OC prognosis. The miRNA expression profile of OC (the training set, including 39...
Autores principales: | Dong, Jingwei, Xu, Mingjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6489015/ https://www.ncbi.nlm.nih.gov/pubmed/31002358 http://dx.doi.org/10.3892/or.2019.7108 |
Ejemplares similares
-
A 19-miRNA Support Vector Machine classifier and a 6-miRNA risk score system designed for ovarian cancer patients
por: Dong, Jingwei, et al.
Publicado: (2019) -
Discovering Cancer-Related miRNAs from miRNA-Target Interactions by Support Vector Machines
por: Pian, Cong, et al.
Publicado: (2020) -
Integrative Analysis of miRNA-mRNA and miRNA-miRNA Interactions
por: Guo, Li, et al.
Publicado: (2014) -
Risk miRNA screening of ovarian cancer based on miRNA functional synergistic network
por: Ying, Huanchun, et al.
Publicado: (2014) -
A support vector machine and a random forest classifier indicates a 15-miRNA set related to osteosarcoma recurrence
por: He, Yunfei, et al.
Publicado: (2018)